Advertisement

Planta

, Volume 248, Issue 3, pp 647–659 | Cite as

Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress

  • Hongyue Liu
  • Xiaoqian Ren
  • Jiuzheng Zhu
  • Xi Wu
  • Chanjuan Liang
Original Article
  • 114 Downloads

Abstract

Main conclusion

Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake.

Abstract

Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.

Keywords

Acid rain Endogenous hormone Exogenous ABA H+-ATPase Nutrient uptake Rice roots 

Abbreviations

GA

Gibberellic acid

IAA

Indole-3-acetic acid

SAR

Simulated acid rain

ZT

Zeatin

Notes

Acknowledgements

The authors are grateful for the financial support from the Natural Science Foundation of Jiangsu Province (No. BK20161131), the National Natural Science Foundation of China (31000245, 31370517) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_1485).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

425_2018_2922_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 17 kb)
425_2018_2922_MOESM2_ESM.tif (536 kb)
Supplementary material 2 (TIFF 537 kb)

References

  1. Abbasi T, Poornima P, Kannadasan T, Abbasi SA (2013) Acid rain: past, present, and future. Int J Environ Eng 5(3):229–272CrossRefGoogle Scholar
  2. Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55(2):178–186CrossRefGoogle Scholar
  3. Alvarez-Pizarro JC, Gomes-Filho E, Prisco JT, Grossi-De-Sá MF, de Oliveira-Neto OB (2011) NH4 +-stimulated low-K+ uptake is associated with the induction of H+ extrusion by the plasma membrane H+-ATPase in sorghum roots under K+ deficiency. J Plant Physiol 168(14):1617–1626CrossRefPubMedGoogle Scholar
  4. Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216(3):355–365PubMedGoogle Scholar
  5. Bo KL, Hong SH, Dong SL (2000) Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula. Atmos Environ 34(4):563–575CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584CrossRefGoogle Scholar
  8. Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177(3):589–607CrossRefPubMedGoogle Scholar
  9. Cheng Z, Jin R, Cao M, Liu X, Chan Z (2016) Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell Tiss Org 125(2):231–240CrossRefGoogle Scholar
  10. Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ (2013) Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4 + toxicity in plant roots. Plant Physiol 163(4):1859–1867CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169(1):205–214CrossRefGoogle Scholar
  12. Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Adv Agronomy 110:251–331CrossRefGoogle Scholar
  13. Forino LMC, Castiglione MR, Bartoli G, Balestri M, Andreucci A, Tagliasacchi AM (2012) Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata. J Hazard Mater 235:271–278CrossRefPubMedGoogle Scholar
  14. Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:39865.  https://doi.org/10.1038/srep39865 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gomez-Cadenas A, Verhey SD, Holappa LD, Shen QX, Ho THD, Walker-Simmons MK (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci USA 96(4):1767–1772CrossRefPubMedGoogle Scholar
  16. Gong H, Chen K, Chen G, Zhu X, Wang S, Zhang C (2003) Effects of gradual drought on the fatty acid composition of polar lipids, H+-ATPase AND 5’-AMPase activities in the plasma membranes of two spring wheat leaves. Acta Phytoecol Sinica 27(4):459–465Google Scholar
  17. Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243(3):767–781CrossRefPubMedGoogle Scholar
  18. Hermans C, Vuylsteke M, Coppens F, Craciun A, Inze D, Verbruggen N (2010) Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol 187(1):119–131CrossRefPubMedGoogle Scholar
  19. Hou S, Zhu J, Ding M, Lv G (2008) Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Talanta 76(4):798–802CrossRefPubMedGoogle Scholar
  20. Imada S, Yamanaka N, Tamai S (2010) Contribution of root growth responses to leaf traits and relative growth rate of Populus alba under different water-table conditions. Trees-Struct Funct 24(6):1163–1172CrossRefGoogle Scholar
  21. Imran MA, Hussain S, Hussain M, Ch MN, Meo AA (2014) Effect of simulated acid rain (SAR) on some morphochemical aspects of mash (Vigna mungo l.). Pak J Bot 46(1):245–250Google Scholar
  22. Janicka-Russak M, Klobus G (2007) Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol 164(3):295–302CrossRefPubMedGoogle Scholar
  23. Janicka-Russak M, Kabala K, Wdowikowska A, Klobus G (2013) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170(10):915–922CrossRefPubMedGoogle Scholar
  24. Jansen MA, Re VDN, Tan MY, Prinsen E, Lagrimini LM, Thorneley RN (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126(3):1012–1023CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ju S, Yin N, Wang L, Zhang C, Wang Y (2017) Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PLoS One 12(3):e0173378.  https://doi.org/10.1371/journal.pone.0173378 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ke L, Wong TWY, Wong AHY, Wong YS, Tam NFY (2003) Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere 52(9):1581–1591CrossRefPubMedGoogle Scholar
  27. Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2010) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron Sustain Dev 30(1):83–107CrossRefGoogle Scholar
  28. Klobus G, Buczek J (1995) The role of plasma-membrane oxidoreductase activity in proton transport. J Plant Physiol 146(1–2):103–107CrossRefGoogle Scholar
  29. Koricheva J, Roy S, Vranjic JA, Haukioja E, Hughes PR, Hanninen O (1997) Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut 95(2):249–258CrossRefPubMedGoogle Scholar
  30. Kumaravelu G, Ramanujam MP (1998) Effect of simulated acid rain on nodulation and nitrogen metabolism in Vigna radiata cultivars. Biol Plant 41(3):445–450CrossRefGoogle Scholar
  31. Li C, Junttila O, Heino P, Palva ET (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23(7):481–487CrossRefPubMedGoogle Scholar
  32. Liang C, Ge Y, Su L, Bu J (2015) Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain. Environ Sci Pollut R 22(1):535–545CrossRefGoogle Scholar
  33. Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272(5259):244–246CrossRefGoogle Scholar
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  35. López MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11(4):420–427CrossRefPubMedGoogle Scholar
  36. Luo L, Xu F, Weng H, Hong S, Duan L, Li Z (2011) Inducing effects and its biological mechanisms of ABA on the chilling resistance of sweet pepper seedlings. Acta Bot Boreali-Occident Sin 31(1):94–100Google Scholar
  37. Maathuis FJM, Salt DE, Williams L (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12(3):250–258CrossRefPubMedGoogle Scholar
  38. Machado J, Azevedo J, Freitas M, Pinto E, Almeida A, Vasconcelos V, Campos A (2017) Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota. Environ Sci Pollut R 24(1):752–764CrossRefGoogle Scholar
  39. Marcinska I, Czyczylo-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, Waligorski P, Juzon K, Cyganek K, Grzesiak S (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14(7):13171–13193CrossRefPubMedPubMedCentralGoogle Scholar
  40. Matilla AJ, Carrillo-Barral N, del Carmen Rodriguez-Gacio M (2015) An update on the role of NCED and CYP707A ABA metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. J Plant Growth Regul 34(2):274–293CrossRefGoogle Scholar
  41. Michelet B, Boutry M (1995) The plasma-membrane H+-ATPase (a highly regulated enzyme with multiple physiological functions). Plant Physiol 108(1):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol Ch 5(1):62–71CrossRefGoogle Scholar
  43. Mohan M, Kumar S (1998) Review of acid rain potential in India: future threats and remedial measures. Curr Sci India 75(6):579–593Google Scholar
  44. Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H, Sun T, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19(4):1192–1208CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oufattole M, Arango M, Boutry M (2000) Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta 210(5):715–722CrossRefPubMedGoogle Scholar
  46. Palma F, Lopez-Gomez M, Tejera NA, Lluch C (2014) Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. Plant Sci 223:16–24CrossRefPubMedGoogle Scholar
  47. Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol 52:817–845CrossRefGoogle Scholar
  48. Ramlall C, Varghese B, Ramdhani S, Pammenter NW, Bhatt A, Berjak P, Sershen (2015) Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol Plant 153(1):149–160CrossRefPubMedGoogle Scholar
  49. Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H, Hettelingh JP, Holland M, LeGall AC, Maas R, Posch M, Spranger T, Sutton MA, Williams M (2012) From acid rain to climate change. Science 338(6111):1153–1154CrossRefPubMedGoogle Scholar
  50. Ruiz-Lozano JM, Del MAM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70(5):565–579CrossRefPubMedGoogle Scholar
  51. Russell RS (1979) Plant root systems: their function and interaction with the soil. Field Crop Res 2(4):177–179Google Scholar
  52. Santi S, Locci G, Monte R, Pinton R, Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54(389):1851–1864CrossRefPubMedGoogle Scholar
  53. Scheiner D (1976) Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res 10(1):31–36CrossRefGoogle Scholar
  54. Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79(1–2):544–552CrossRefPubMedGoogle Scholar
  55. Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun T, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48(3):354–366CrossRefPubMedGoogle Scholar
  56. Shen H, Chen J, Wang Z, Yang C, Sasaki T, Yamamoto Y, Matsumoto H, Yan X (2006) Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot 57(6):1353–1362CrossRefPubMedGoogle Scholar
  57. Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86(2):94–105CrossRefGoogle Scholar
  58. Sumner JB (1944) A method for the colorimetric determination of phosphorus. Science 100(2601):413–414CrossRefPubMedGoogle Scholar
  59. Wakeel A, Hanstein S, Pitann B, Schubert S (2010) Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress. J Plant Physiol 167(9):725–731CrossRefPubMedGoogle Scholar
  60. Walch-Liu P, Neumann G, Bangerth F, Engels C (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51(343):227–237CrossRefPubMedGoogle Scholar
  61. Wang T, Zhang X, Li C (2007) Growth, abscisic acid content, and carbon isotope composition in wheat cultivars grown under different soil moisture. Biol Plant 51(1):181–184CrossRefGoogle Scholar
  62. Wang Y, Ma F, Li M, Liang D, Zou J (2011) Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul 64(1):63–74CrossRefGoogle Scholar
  63. Wei L, Lv B, Wang M, Ma H, Yang H, Liu X, Jiang C, Liang Z (2015) Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol Bioch 90:50–57CrossRefGoogle Scholar
  64. Wen K, Liang C, Wang L, Hu G, Zhou Q (2011) Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84(5):601–608CrossRefPubMedGoogle Scholar
  65. Wu X, Liang C (2017) Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ Sci Pollut R 24(5):4860–4870CrossRefGoogle Scholar
  66. Yan A, Chen Z (2017) The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep 36(5):689–703CrossRefPubMedGoogle Scholar
  67. Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun T-P (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19(10):3037–3057CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhang B, Bu J, Liang C (2016) Root morphology and growth regulated by mineral nutrient absorption in rice roots exposed to simulated acid rain. Water Air Soil Poll.  https://doi.org/10.1007/s11270-016-3151-1
  69. Zhang B, Bu J, Liang C (2017a) Regulation of nitrogen and phosphorus absorption by plasma membrane H+-ATPase in rice roots under simulated acid rain. Int J Environ Sci Te 14(1):101–112CrossRefGoogle Scholar
  70. Zhang Y, Li Q, Zhang F, Xie G (2017b) Estimates of economic loss of materials caused by acid deposition in China. Sustainability 9(4):488.  https://doi.org/10.3390/su9040488 CrossRefGoogle Scholar
  71. Zhao M, Han Y, Feng Y, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31(4):671–685CrossRefPubMedGoogle Scholar
  72. Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant, Cell Environ 32(10):1428–1440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongyue Liu
    • 1
    • 2
  • Xiaoqian Ren
    • 2
  • Jiuzheng Zhu
    • 2
  • Xi Wu
    • 2
  • Chanjuan Liang
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil EngineeringJiangnan UniversityWuxiChina
  3. 3.Jiangsu Cooperative Innovation Center of Technology and Material of Water TreatmentJiangnan UniversityWuxiChina

Personalised recommendations