Advertisement

Planta

, Volume 248, Issue 2, pp 393–407 | Cite as

Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root

  • Thomas C. Pesacreta
  • Karl H. Hasenstein
Original Article
  • 64 Downloads

Abstract

Main conclusion

Potassium (K), phosphorous (P), and carboxyfluorescein (CF) accumulate in functionally distinct tissues within the pine seedling root cortex.

Seedlings of Pinus pinea translocate exogenous CF and endogenous K and P from the female gametophyte/cotyledons to the growing radicle. Following unloading in the root tip, these materials accumulate in characteristic spatial patterns. Transverse sections of root tips show high levels of P in a circular ring of several layers of inner cortical cells. K and CF are minimal in the high P tissue. In contrast, high levels of K and CF accumulate in outer cortical cells, and in the vascular cylinder. These patterns are a property of living tissue because they change after freeze–thaw treatment, which kills the cells and results in uniform distribution of K and P. K concentration can be reduced to undetectable levels by incubation of roots in 100 mM NaCl. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) of root segments both reliably determine K and P concentrations.

Keywords

ICP-OES Ion distribution Mineral distribution Pinus pinea Roots SEM/EDS 

Abbreviations

CF

Carboxyfluorescein

CFDA

Carboxyfluorescein diacetate

ICP-OES

Inductively coupled plasma optical emission spectrometry

RAM

Root apical meristem

SEM/EDS

Scanning electron microscopy/energy-dispersive X-ray spectroscopy

References

  1. Barlow PW (1976) Towards an understanding of behavior of root meristems. J Theor Biol 57:433–451CrossRefPubMedGoogle Scholar
  2. Barlow PW, Parker JS (1996) Microtubular cytoskeleton and root morphogenesis. Plant Soil 187:23–36CrossRefGoogle Scholar
  3. Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89:908–920CrossRefPubMedGoogle Scholar
  4. Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815CrossRefPubMedGoogle Scholar
  5. Bucking H, Heyser W (2000a) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol 145:311–320CrossRefGoogle Scholar
  6. Bucking H, Heyser W (2000b) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II. The distribution of calcium, potassium and sodium. New Phytol 145:321–331CrossRefGoogle Scholar
  7. Byrne JM (1973) Root apex of Malva sylvestris 3. Lateral root development and quiescent center. Am J Bot 60:657–662CrossRefGoogle Scholar
  8. Cartwright HN, Humphries JA, Smith LG (2009) A receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science 323:649–651CrossRefPubMedGoogle Scholar
  9. Chen ZC, Yamaji N, Fujii-Kashino M, Ma JF (2016) A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice. Plant Physiol 171:494–507CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clowes FAL (1956) Nucleic acids in root apical meristems of Zea. New Phytol 55:29–35CrossRefGoogle Scholar
  11. Clowes FAL (1976) The root apex. In: Yeoman MM (ed) Cell division in higher plants. Academic Press, New York, pp 254–284Google Scholar
  12. Doerner P (2000) Root patterning: does auxin provide positional cues? Curr Biol 10:R201–R203CrossRefPubMedGoogle Scholar
  13. Drew MC, Webb J, Saker LR (1990) Regulation of K+ uptake and transport to the xylem in barley roots—K+ distribution determined by electron probe X-ray microanalysis of frozen-hydrated cells. J Exp Bot 41:815–825CrossRefGoogle Scholar
  14. Dreyer I, Gomez-Porras JL, Riedelsberger J (2017) The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytol 216:1049–1053CrossRefPubMedGoogle Scholar
  15. Dučić T, Thieme J, Polle A (2012) Phosphorus compartmentalization on the cellular level of douglas fir root as affected by Mn toxicity: a synchrotron-based FTIR approach. Spectroscopy 27:265–272CrossRefGoogle Scholar
  16. Ensikat H-J, Weigend M (2013) Cryo-scanning electron microscopy of plant samples without metal coating, utilizing bulk conductivity. Microscopy Anal 27:7–10Google Scholar
  17. Esau K (1965) Plant anatomy. Wiley, New York, London, SydneyGoogle Scholar
  18. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New YorkGoogle Scholar
  19. Giaquinta RT, Lin W, Sadler NL, Franceschi VR (1983) Pathway of phloem unloading of sucrose in corn roots. Plant Physiol 72:362–367CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harris JM (2015) Abscisic acid: hidden architect of root system structure. Plants 4:548–572CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894CrossRefPubMedPubMedCentralGoogle Scholar
  22. He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hinde P, Richardson R, Koyro H-W, Tomos AD (1998) Quantitative X-ray microanalysis of solutes in individual plant cells: a comparison of microdroplet and in situ frozen-hydrated data. J Microscopy 191:303–310CrossRefGoogle Scholar
  24. Hodson MJ, Sangster AG (1989) Subcellular-localization of mineral-deposits in the roots of wheat (Triticum aestivum L). Protoplasma 151:19–32CrossRefGoogle Scholar
  25. Irish VF, Sussex IM (1992) A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115:745–753Google Scholar
  26. Jeschke WD, Stelter W (1976) Measurement of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic-absorption spectroscopy. Planta 128:107–112CrossRefPubMedGoogle Scholar
  27. Jia HF, Zhang ST, Wang LZ, Yang YX, Zhang HY, Cui H, Shao HF, Xu GH (2017) OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. J Exp Bot 68:5057–5068CrossRefPubMedGoogle Scholar
  28. Jones GW, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Springer, Dordrecht, pp 159–180Google Scholar
  29. Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kerk NM, Jiang KN, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kochian L, Lucas W (1983) Potassium transport in corn roots. 2. The significance of the root periphery. Plant Physiol 73:208–214CrossRefPubMedPubMedCentralGoogle Scholar
  32. Läuchli A, Spurr AR, Epstein E (1971) Lateral transport of ions into the xylem of corn roots. Plant Physiol 48:118–124CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marcon C, Malik WA, Walley JW, Shen ZX, Paschold A, Smith LG, Piepho HP, Briggs SP, Hochholdinger F (2015) A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Plant Physiol 168:233–246CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nieves-Cordones M, Aleman F, Martinez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695CrossRefPubMedGoogle Scholar
  36. Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J 6:759–766CrossRefGoogle Scholar
  37. Overvoorde P, Fukaki H, Beeckman T (2002) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537.  https://doi.org/10.1101/cshperspect.a001537 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pesacreta TC (2015) F-actin distribution in root primary tissues of several seed plant species. Am J Bot 102:1422–1433CrossRefPubMedGoogle Scholar
  39. Pesacreta TC, Parthasarathy MV (1984) Microfilament bundles in the roots of a conifer, Chamaecyparis obtusa. Protoplasma 121:54–64CrossRefGoogle Scholar
  40. Pesacreta TC, Purpera MA (2014) Light microscopy survey of extant gymnosperm root protophloem and comparison with basal angiosperms. Botany-Botanique 92:388–401CrossRefGoogle Scholar
  41. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688CrossRefPubMedGoogle Scholar
  42. Pritchard J, Williams G, Wyn Jones RG, Tomos AD (1989) Radial turgor pressure profiles in growing and mature zones of wheat roots - a modification of the pressure probe. J Exp Bot 40:567–571CrossRefGoogle Scholar
  43. Ross-Elliott TJ, Jensen KH, Haaning KS, Wagner BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan DW, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in roots is convective and regulated by the phloem pole pericycle. eLife 6:e24125CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60PubMedPubMedCentralGoogle Scholar
  45. Salazar-Henao JE, Velez-Bermudez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858CrossRefPubMedGoogle Scholar
  46. Schiefelbein JW, Masucci JD, Wang HY (1997) Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9:1089–1098CrossRefPubMedPubMedCentralGoogle Scholar
  47. Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn and Cu. Plant Soil 325:39–48CrossRefGoogle Scholar
  48. Truernit E (2017) Plant physiology: unveiling the dark side of phloem translocation. Curr Biol 27:R348–R350CrossRefPubMedGoogle Scholar
  49. Van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248.  https://doi.org/10.1186/gb-2009-10-12-248 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van Steveninck RFM, Armstrong WD, Peters PD, Hall TA (1976) Ultrastructural localization of ions III. Distribution of chloride in mesophyll cells of mangrove (Aegiceras corniculatum Blanco). Aust J Plant Physiol 3:367–376CrossRefGoogle Scholar
  51. Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535CrossRefPubMedGoogle Scholar
  52. Vilaine F, Kerchev P, Clement G, Batailler B, Cayla T, Bill L, Gissot L, Dinant S (2013) Increased expression of a phloem membrane protein encoded by NHL26 alters phloem export and sugar partitioning in Arabidopsis. Plant Cell 25:1689–1708CrossRefPubMedPubMedCentralGoogle Scholar
  53. Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13:385–398CrossRefPubMedPubMedCentralGoogle Scholar
  54. Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514CrossRefPubMedGoogle Scholar
  55. Wilcox H (1954) Primary organization of active and dormant roots of noble fir, Abies procera. Am J Bot 41:812–821CrossRefGoogle Scholar
  56. Wilcox H (1962) Growth studies of the root of incense cedar Libocedrus decurrens. I. The origin and development of primary tissues. Am J Bot 49:221–236CrossRefGoogle Scholar
  57. Yeo AR, Kramer D, Läuchli A, Gullasch J (1977) Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium. J Exp Bot 28:17–29CrossRefGoogle Scholar
  58. Yuan W, Zhang D, Song T, Xu F, Lin S, Xu W, Li Q, Zhu Y, Liang J, Zhang J (2017) Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. J Exp Bot 68:1731–1741CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biology DepartmentUniversity of LouisianaLafayetteUSA
  2. 2.Microscopy CenterUniversity of LouisianaLafayetteUSA

Personalised recommendations