Advertisement

Planta

, Volume 248, Issue 2, pp 381–391 | Cite as

Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum

  • Ruchi Gupta
  • Campbell J. Hogan
  • Matthew A. Perugini
  • Tatiana P. Soares da Costa
Original Article

Abstract

Main conclusion

Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering.

Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a KM (pyruvate) of 0.45 mM, KM (l-aspartate-4-semialdehyde) of 0.07 mM, kcat of 56 s−1, and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a Rg of 33 Å and Dmax of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.

Keywords

CD spectroscopy Class I aldolase Enzyme kinetics SAXS Sedimentation Wheat 

Notes

Acknowledgements

TPSC acknowledges the National Health and Medical Research Council of Australia for fellowship support (APP1091976) and MAP the Australian Research Council for funding support (DP150103313). We would like to acknowledge the La Trobe University-Comprehensive Proteomics Platform, La Trobe University, Melbourne, Australia for providing the infrastructure and expertise. We would also like to acknowledge the support and assistance of the beamline scientists at the Australian Synchrotron, Victoria, Australia. Finally, we thank all members of the Perugini laboratory for helpful discussions during the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

There are no competing interests to declare.

Supplementary material

425_2018_2894_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1087 kb)
425_2018_2894_MOESM2_ESM.tif (840 kb)
Supplementary material 2 (TIFF 839 kb)
425_2018_2894_MOESM3_ESM.tif (232 kb)
Supplementary material 3 (TIFF 232 kb)

References

  1. Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RC, Wagner J, Perugini MA (2012) Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 7:e38318CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RC, Gerrard JA, Wagner J, Perugini MA (2013) Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. Plant Mol Biol 81:431–446CrossRefPubMedGoogle Scholar
  3. Atkinson SC, Hor L, Dogovski C, Dobson RC, Perugini MA (2014) Identification of the bona fide DHDPS from a common plant pathogen. Proteins 82:1869–1883CrossRefPubMedGoogle Scholar
  4. Blagova E, Levdikov V, Milioti N, Fogg MJ, Kalliomaa AK, Brannigan JA, Wilson KS, Wilkinson AJ (2006) Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 Å resolution. Proteins 62:297–301CrossRefPubMedGoogle Scholar
  5. Blickling S, Beisel HG, Bozic D, Knablein J, Laber B, Huber R (1997) Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure. J Mol Biol 274:608–621CrossRefPubMedGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burgess BR, Dobson RC, Bailey MF, Atkinson SC, Griffin MD, Jameson GB, Parker MW, Gerrard JA, Perugini MA (2008) Structure and evolution of a novel dimeric enzyme from a clinically important bacterial pathogen. J Biol Chem 283:27598–27603CrossRefPubMedGoogle Scholar
  8. Davis AJ, Perugini MA, Smith BJ, Stewart JD, Ilg T, Hodder AN, Handman E (2004) Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Biol Chem 279:12462–12468CrossRefPubMedGoogle Scholar
  9. Dereppe C, Bold G, Ghisalba O, Ebert E, Schar HP (1992) Purification and characterization of dihydrodipicolinate synthase from pea. Plant Physiol 98:813–821CrossRefPubMedPubMedCentralGoogle Scholar
  10. Diekmann F (2009) Wheat. J Agric Food Inf 10:289–299CrossRefGoogle Scholar
  11. Dobson RC, Griffin MD, Jameson GB, Gerrard JA (2005) The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from Escherichia coli with improved resolution show new features of biological significance. Acta Crystallogr D Biol Crystallogr 61:1116–1124CrossRefPubMedGoogle Scholar
  12. Dobson RC, Giron I, Hudson AO (2011) L, L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS One 6:e20439CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dogovski C, Atkinson SC, Dommaraju SR, Dobson RC, Perugini MA, Hor L, Hutton CA, Gerrard JA (2009) Lysine biosynthesis in bacteria: an unchartered pathway for novel antibiotic design. In: Doelle H (ed) Biotechnology part 1, vol 11. Encyclopedia of Life Support Systems (EOLSS), Oxford, pp 116–136Google Scholar
  14. Dogovski C, Dommaraju SR, Small LC, Perugini MA (2012a) Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Protein Expr Purif 85:66–76CrossRefPubMedGoogle Scholar
  15. Dogovski C, Wubben JM, Paxman JJ, Wagner J, Hor L, Peverelli MG, Perugini MA, Downton M, Reumann M, Taylor NL (2012b) Enzymology of bacterial lysine biosynthesis. In: Ekinci D (ed) Biochemistry. InTech Open Access Publisher, Croatia, pp 225–262.  https://doi.org/10.5772/34121 CrossRefGoogle Scholar
  16. Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MD, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA (2013) From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 8:e83419CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dommaraju SR, Dogovski C, Czabotar PE, Hor L, Smith BJ, Perugini MA (2011) Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Arch Biochem Biophys 512:167–174CrossRefPubMedGoogle Scholar
  18. Frisch DA, Gengenbach BG, Tommey AM, Sellner JM, Somers DA, Myers DE (1991) Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol 96:444–452CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6:13–21PubMedGoogle Scholar
  20. Georgescauld F, Popova K, Gupta AJ, Bracher A, Engen JR, Hayer-Hartl M, Hartl FU (2014) GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157:922–934CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ghislain M, Frankard V, Jacobs M (1990) Dihydrodipicolinate synthase of Nicotiana sylvestris, a chloroplast-localized enzyme of the lysine pathway. Planta 180:480–486CrossRefPubMedGoogle Scholar
  22. Griffin MD, Dobson RC, Pearce FG, Antonio L, Whitten AE, Liew CK, Mackay JP, Trewhella J, Jameson GB, Perugini MA, Gerrard JA (2008) Evolution of quaternary structure in a homotetrameric enzyme. J Mol Biol 380:691–703CrossRefPubMedGoogle Scholar
  23. Griffin MD, Dobson RC, Gerrard JA, Perugini MA (2010) Exploring the dihydrodipicolinate synthase tetramer: how resilient is the dimer–dimer interface? Arch Biochem Biophys 494:58–63CrossRefPubMedGoogle Scholar
  24. Griffin MD, Billakanti JM, Wason A, Keller S, Mertens HD, Atkinson SC, Dobson RC, Perugini MA, Gerrard JA, Pearce FG (2012) Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS One 7:e40318CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA (2018) Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 145:85–93CrossRefPubMedGoogle Scholar
  26. Hor L, Dobson RC, Downton MT, Wagner J, Hutton CA, Perugini MA (2013) Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 288:9238–9248CrossRefPubMedPubMedCentralGoogle Scholar
  27. Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614CrossRefPubMedGoogle Scholar
  28. Huang S, Kruger DE, Frizzi A, D’Ordine RL, Florida CA, Adams WR, Brown WE, Luethy MH (2005) High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotechnol J 3:555–569CrossRefPubMedGoogle Scholar
  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38CrossRefGoogle Scholar
  30. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kaneko T, Hashimoto T, Kumpaisal R, Yamada Y (1990) Molecular cloning of wheat dihydrodipicolinate synthase. J Biol Chem 265:17451–17455PubMedGoogle Scholar
  32. Kefala G, Evans GL, Griffin MD, Devenish SR, Pearce FG, Perugini MA, Gerrard JA, Weiss MS, Dobson RC (2008) Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 411:351–360CrossRefPubMedGoogle Scholar
  33. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392CrossRefPubMedGoogle Scholar
  34. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282CrossRefGoogle Scholar
  35. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286CrossRefGoogle Scholar
  36. Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41CrossRefGoogle Scholar
  37. Kumpaisal R, Hashimoto T, Yamada Y (1987) Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiol 85:145–151CrossRefPubMedPubMedCentralGoogle Scholar
  38. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, pp 90–125Google Scholar
  39. Leatherbarrow RJ (1988) Enzfitter: a non-linear regression data analysis program for IBM PC. J Am Chem Soc 110:4098–4100CrossRefGoogle Scholar
  40. Liu Y, Xie S, Yu J (2016) Genome-wide analysis of the lysine biosynthesis pathway network during maize seed development. PLoS One 11:e0148287CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mank N, Arnette A, Klapper V, Offermann L, Chruszcz M (2015) Structure of dihydrodipicolinate synthase from the commensal bacterium Bacteroides thetaiotaomicron at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 71:449–454CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matthews BF, Widholm JM (1978) Regulation of lysine and threonine synthesis in carrot cell suspension cultures and whole carrot roots. Planta 141:315–321CrossRefPubMedGoogle Scholar
  43. Matthews BF, Widholm JM (1979) Expression of aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase during growth of carrot cell suspension cultures on lysine- and threonine-supplemented media. Z Naturforsch C 34:1177–1185PubMedCrossRefGoogle Scholar
  44. Mirwaldt C, Korndorfer I, Huber R (1995) The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 A resolution. J Mol Biol 246:227–239CrossRefPubMedGoogle Scholar
  45. Naqvi KF, Staker BL, Dobson RC, Serbzhinskiy D, Sankaran B, Myler PJ, Hudson AO (2016) Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 72:2–9CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pearce FG, Perugini MA, McKerchar HJ, Gerrard JA (2006) Dihydrodipicolinate synthase from Thermotoga maritima. Biochem J 400:359–366CrossRefPubMedPubMedCentralGoogle Scholar
  47. Perugini MA, Schuck P, Howlett GJ (2000) Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J Biol Chem 275:36758–36765CrossRefPubMedGoogle Scholar
  48. Perugini MA, Schuck P, Howlett GJ (2002) Differences in the binding capacity of human apolipoprotein E3 and E4 to size-fractionated lipid emulsions. Eur J Biochem 269:5939–5949CrossRefPubMedGoogle Scholar
  49. Peverelli MG, Soares da Costa TP, Kirby N, Perugini MA (2016) Dimerization of bacterial diaminopimelate decarboxylase is essential for catalysis. J Biol Chem 291:9785–9795CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sagong HY, Kim KJ (2016) Structural insight into dihydrodipicolinate reductase from Corynebacterium glutamicum for lysine biosynthesis. J Microbiol Biotechnol 26:226–232CrossRefPubMedGoogle Scholar
  51. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  52. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82:1096–1111CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shaul O, Galili G (1992) Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J 2:203–209CrossRefGoogle Scholar
  55. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553CrossRefPubMedGoogle Scholar
  56. Soares da Costa TP, Yap MY, Perugini MA, Wallace JC, Abell AD, Wilce MC, Polyak SW, Booker GW (2014) Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus. Mol Microbiol 91:110–120CrossRefPubMedGoogle Scholar
  57. Soares da Costa TP, Christensen JB, Desbois S, Gordon SE, Gupta R, Hogan CJ, Nelson TG, Downton MT, Gardhi CK, Abbott BM, Wagner J, Panjikar S, Perugini MA (2015) Quaternary structure analyses of an essential oligomeric enzyme. Methods Enzymol 562:205–223CrossRefPubMedGoogle Scholar
  58. Soares da Costa TP, Desbois S, Dogovski C, Gorman MA, Ketaren NE, Paxman JJ, Siddiqui T, Zammit LM, Abbott BM, Robins-Browne RM, Parker MW, Jameson GB, Hall NE, Panjikar S, Perugini MA (2016) Structural determinants defining the allosteric inhibition of an essential antibiotic target. Structure 24:1282–1291CrossRefPubMedGoogle Scholar
  59. Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA (2018) Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 10:153–162Google Scholar
  60. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260CrossRefPubMedGoogle Scholar
  61. Sreerama N, Venyaminov SY, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem 287:243–251CrossRefPubMedGoogle Scholar
  62. Sridharan U, Ebihara A, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K (2014) Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus. Extremophiles 18:973–985CrossRefPubMedGoogle Scholar
  63. Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503CrossRefGoogle Scholar
  64. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886CrossRefPubMedPubMedCentralGoogle Scholar
  65. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773CrossRefGoogle Scholar
  66. Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RC, Hudson AO (2014) L,L-diaminopimelate aminotransferase (DapL): a putative target for the development of narrow-spectrum antibacterial compounds. Front Microbiol 5:509CrossRefPubMedPubMedCentralGoogle Scholar
  67. Trigoso YD, Evans RC, Karsten WE, Chooback L (2016) Cloning, expression, and purification of histidine-tagged Escherichia coli dihydrodipicolinate reductase. PLoS One 11:e0146525CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961CrossRefPubMedPubMedCentralGoogle Scholar
  69. van der Meer IM, Bovy AG, Bosch D (2001) Plant-based raw material: improved food quality for better nutrition via plant genomics. Curr Opin Biotechnol 12:488–492CrossRefPubMedGoogle Scholar
  70. Vauterin M, Frankard V, Jacobs M (1999) The Arabidopsis thaliana DHDPS gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Mol Biol 39:695–708CrossRefPubMedGoogle Scholar
  71. Voss JE, Scally SW, Taylor NL, Atkinson SC, Griffin MD, Hutton CA, Parker MW, Alderton MR, Gerrard JA, Dobson RC, Dogovski C, Perugini MA (2010) Substrate-mediated stabilization of a tetrameric drug target reveals Achilles heel in anthrax. J Biol Chem 285:5188–5195CrossRefPubMedGoogle Scholar
  72. Wallsgrove RM, Mazelis M (1980) The enzymology of lysine biosynthesis in higher plants: complete localization of the regulatory enzyme dihydrodipicolinate synthase in the chloroplasts of spinach leaves. FEBS Lett 116:189–192CrossRefPubMedGoogle Scholar
  73. Wallsgrove RM, Mazelis M (1981) Spinach leaf dihydrodipicolinate synthase: partial purification and characterization. Phytochemistry 20:2651–2655CrossRefGoogle Scholar
  74. Wang W, Galili G (2016) Transgenic high-lysine rice—a realistic solution to malnutrition? J Exp Bot 67:4009–4011CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yang QQ, Zhang CQ, Chan ML, Zhao DS, Chen JZ, Wang Q, Li QF, Yu HX, Gu MH, Sun SS, Liu QQ (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4285–4296CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations