Planta

, Volume 247, Issue 5, pp 1051–1066 | Cite as

Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

Review
  • 217 Downloads

Abstract

Main conclusion

The present review summarizes current knowledge of the biosynthesis and biological importance of isoprenoid-derived plant signaling compounds.

Cellular organisms use chemical signals for intercellular communication to coordinate their growth, development, and responses to environmental cues. The skeletons of majority of plant signaling molecules, mediators of plant intercellular ‘broadcasting’, are built from C5 units of isoprene and therefore belong to a huge and diverse group of natural substances called isoprenoids (terpenoids). They fill many important roles in nature. This review summarizes current knowledge of the biosynthesis and biological importance of a group of isoprenoid-derived plant signaling compounds.

Keywords

Dimethylallyl diphosphate Isopentenyl diphosphate Isoprenoids Plant hormones Phytoecdysteroids Terpenoids 

Abbreviations

ABA

Abscisic acid

BRs

Brassinosteroids

CKs

Cytokinins

DMAPP

Dimethylallyl diphosphate

DOXP

1-Deoxy-d-xylulose-5-phosphate pathway

GAs

Gibberellins

HMBPP

4-Hydroxy-3-methyl-2-(E)-butenyl diphosphate

IPP

Isopentenyl diphosphate

MEP

2-C-Methyl-d-erythritol-4-phosphate

MVA

Mevalonic acid

PEs

Phytoecdysteroids

SLs

Strigolactones

Notes

Acknowledgements

Financial support from the Ministry of Education, Youth and Sport of the Czech Republic through the National Program of Sustainability (Grant no. LO 1204) is gratefully acknowledged. The authors would like to also express their sincere thanks to Sees-editing Ltd. for critical reading and editing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257.  https://doi.org/10.1104/pp.125.3.1248 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid derived plant hormone. Annu Rev Plant Biol 66:161–186.  https://doi.org/10.1146/annurev-arplant-043014-114759 CrossRefPubMedGoogle Scholar
  3. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351.  https://doi.org/10.1126/science.1218094 CrossRefPubMedGoogle Scholar
  4. Bajguz A (2011) Brassinosteroids—occurrence and chemical structures in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer Science + Business Media B.V., Dordrecht, pp 1–28Google Scholar
  5. Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46:844–854.  https://doi.org/10.1016/j.plaphy.2008.06.002 CrossRefPubMedGoogle Scholar
  6. Bergamasco R, Horn DHS (1983) Distribution and role of insect hormones in plants. Endocrinology of insects. A. R. Liss Inc., New York, pp 627–654Google Scholar
  7. Blackwell JR, Horgan R (1993) Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP: AMP isopentenyl transferase. Phytochemistry 34:1477–1481.  https://doi.org/10.1016/S0031-9422(00)90831-8 CrossRefGoogle Scholar
  8. Boo KH, Lee D, Jeon GL, Ko SH, Cho SK, Kim JH, Park SP, Hong Q, Lee SH, Lee DS, Riu KZ (2010) Distribution and biosynthesis of 20-hydroxyecdysone in plants of Achyranthes japonica Nakai. Biosci Biotechnol Biochem 74:2226–2231.  https://doi.org/10.1271/bbb.100410 CrossRefPubMedGoogle Scholar
  9. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449.  https://doi.org/10.1016/j.devcel.2005.01.009 CrossRefPubMedGoogle Scholar
  10. Braithwaite GD, Goodwin TW (1960a) Studies on carotenogenesis 27. Incorporation of [2-14C] acetate, DL-[2-14C] mevalonate and 14CO2 into carrot-root preparations. Biochem J 76:194–197CrossRefPubMedPubMedCentralGoogle Scholar
  11. Braithwaite GD, Goodwin TW (1960b) Studies on carotenogenesis 25. The incorporation of [1-14C] acetate, [2-14C] acetate and 14CO2 into lycopene by tomato slices. Biochem J 76:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brewer PB, Koltai H, Bereridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28.  https://doi.org/10.1093/mp/sss130 CrossRefPubMedGoogle Scholar
  13. Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588:1802–1807.  https://doi.org/10.1016/j.febslet.2014.03.041 CrossRefPubMedGoogle Scholar
  14. Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng J-C et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351.  https://doi.org/10.1242/dev.01403 CrossRefPubMedGoogle Scholar
  15. Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Concepcion M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591.  https://doi.org/10.1104/pp.003798 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Connolly JD, Hill RA (1992) Dictionary of terpenoids. Chapman and Hall, New YorkGoogle Scholar
  17. Cooper GM (2000) Structure of the plasma membrane. In: The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland (10: 0-87893-106-6) Google Scholar
  18. Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R (2007) The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19:1048–1064.  https://doi.org/10.1105/tpc.106.049114 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370.  https://doi.org/10.1016/j.jplph.2010.05.013 CrossRefPubMedGoogle Scholar
  20. Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, Kuzuyama T, Seto H, Kamiya Y, León P (2000) Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol 124:95–104.  https://doi.org/10.1104/pp.124.1.95 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166.  https://doi.org/10.1199/tab.0166 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452.  https://doi.org/10.1093/jxb/err004 CrossRefPubMedGoogle Scholar
  23. Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14:1–10.  https://doi.org/10.1039/NP9971400001 CrossRefPubMedGoogle Scholar
  24. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164.  https://doi.org/10.1146/annurev.arplant.54.031902.134921 CrossRefPubMedGoogle Scholar
  25. Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotechnol Biochem 59:1973–1975.  https://doi.org/10.1271/bbb.59.1973 CrossRefGoogle Scholar
  26. Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939.  https://doi.org/10.1104/pp.008722 CrossRefPubMedPubMedCentralGoogle Scholar
  27. García-Alcázar M, Giménez E, Pineda B, Capel C, García-Sogo B, Sánchez S, Yuste-Lisbona FJ, Angosto T, Capel J, Moreno V, Lozano R (2017) Albino T-DNA tomato mutant reveals a key function of 1-deoxy-d-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Sci Rep 7:45333.  https://doi.org/10.1038/srep45333 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430.  https://doi.org/10.1038/343425a0 CrossRefPubMedGoogle Scholar
  29. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194.  https://doi.org/10.1038/nature07271 CrossRefPubMedGoogle Scholar
  30. Goodwin TW (1958) Studies in carotenogenesis 25. The incorporation of 14CO2, [2-14C] acetate and [2-14C] mevalonic acid into β-carotene by iluminated etiolated maize seedlings. Biochem J 70:612–617CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grebenok RJ, Adler JH (1993) Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 33:341–347.  https://doi.org/10.1016/0031-9422(93)85514-R CrossRefGoogle Scholar
  32. Grove MD, Spencer FG, Rohwedder WK, Mandava NBN, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217.  https://doi.org/10.1038/281216a0 CrossRefGoogle Scholar
  33. Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339.  https://doi.org/10.1105/tpc.109.066969 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Havlová M, Dobrev PI, Motyka V, Štorchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R (2008) The role of cytokinins in responses to water deficit in tobacco plants overexpressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353.  https://doi.org/10.1111/j.1365-3040.2007.01766.x CrossRefPubMedGoogle Scholar
  35. Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842.  https://doi.org/10.1073/pnas.201399298 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25.  https://doi.org/10.1042/BJ20120245 CrossRefPubMedGoogle Scholar
  37. Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001) A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208.  https://doi.org/10.1046/j.1365-313X.2001.01150.x CrossRefPubMedGoogle Scholar
  38. Hirai N, Yoshida R, Todoroki Y, Ohigashi H (2000) Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem 64:1448–1458.  https://doi.org/10.1271/bbb.64.1448 CrossRefPubMedGoogle Scholar
  39. Javitt NB (1994) Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 8:1308–1311CrossRefPubMedGoogle Scholar
  40. Joo S-H, Kim T-W, Son S-H, Lee WS, Yokota T, Kim S-K (2012) Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J Exp Bot 63:1823–1833.  https://doi.org/10.1093/jxb/err354 CrossRefPubMedGoogle Scholar
  41. Joo S-H, Jang M-S, Kim M-K, Lee J-E, Kim S-K (2015) Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111:84–90.  https://doi.org/10.1016/j.phytochem.2014.11.006 CrossRefPubMedGoogle Scholar
  42. Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677–685.  https://doi.org/10.1093/pcp/pce112 CrossRefPubMedGoogle Scholar
  43. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194.  https://doi.org/10.1074/jbc.M208659200 CrossRefPubMedGoogle Scholar
  44. Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054.  https://doi.org/10.1074/jbc.M314195200 CrossRefPubMedGoogle Scholar
  45. Kim T-W, Chang SC, Lee JS, Takatsuto S, Yokota T, Kim SK (2004) Novel biosynthetic pathway of castasterone from cholesterol in tomato. Plant Physiol 135:1231–1242.  https://doi.org/10.1104/pp.104.043588 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Klämbt D (1992) The biogenesis of cytokinins in higher plants: our present knowledge. In: Kamínek M, Mok DWS, Zažímalová E (eds) Physiology and biochemistry of cytokinins in plants. SPB Academic Publishing, The Hague, pp 25–27Google Scholar
  47. Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263CrossRefPubMedGoogle Scholar
  48. Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393PubMedGoogle Scholar
  49. Krall L, Raschke M, Zenk MH, Baron C (2002) The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett 527:315–318.  https://doi.org/10.1016/S0014-5793(02)03258-1 CrossRefPubMedGoogle Scholar
  50. Kubo I, Hanke FJ (1986) Chemical methods for isolating and identifying phytochemicals biologically active in insects. In: Miller JR, Miller TA (eds) Insect plant interactions. Springer, New York, pp 225–249CrossRefGoogle Scholar
  51. Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H (2012) Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol 160:319–331.  https://doi.org/10.1104/pp.112.196733 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lichtenthaler HK (1998) The plants’ 1-deoxy-d-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Fett/Lipid 100:128–138.  https://doi.org/10.1146/annurev.arplant.50.1.47 CrossRefGoogle Scholar
  53. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65.  https://doi.org/10.1146/annurev.arplant.50.1.47 CrossRefPubMedGoogle Scholar
  54. Lichtenthaler HK, Bach TJ, Wellburn AR (1982) Cytoplasmic and plastidic isoprenoid compounds of oat seedlings and their distinct labeling from 14C-mevalonate. In: Wintermans JFGM, Kuiper P (eds) Biochemistry and metabolism of plant lipids. Elsevier, Amsterdam, pp 489–500Google Scholar
  55. Little HN, Bloch K (1950) Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J Biol Chem 138:33–46Google Scholar
  56. Liu W-C, Carns HR (1961) Isolation of abscisin, an abscission accelerating substance. Science 134:384–385CrossRefPubMedGoogle Scholar
  57. Lopez-Obando M, Ligerot Y, Bonhomme S, Boyer FD, Rameau C (2015) Strigolactone biosynthesis and signaling in plant development. Development 142:3615–3619.  https://doi.org/10.1242/dev.120006 CrossRefPubMedGoogle Scholar
  58. Lütke-Brinkhaus F, Kleinig H (1987) Formation of isopentenyl diphosphate via mevalonate does not occur within etioplasts or etiochloroplasts of mustard (Sinapis alba L.) seedlings. Planta 171:401–411CrossRefGoogle Scholar
  59. MacMillan J (1998) Gibberellin metabolism. Pure Appl Chem 50:995–1004.  https://doi.org/10.1351/pac197850090995 CrossRefGoogle Scholar
  60. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342PubMedPubMedCentralGoogle Scholar
  61. Milborrow BV, Lee HS (1998) Endogenous biosynthetic precursors of (+)-abscisic acid. VI—Carotenoids and ABA are formed by the ‘non-mevalonate’ triose-pyruvate pathway in chloroplasts. Aust J Plant Physiol 25:507–512.  https://doi.org/10.1071/PP98006 CrossRefGoogle Scholar
  62. Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318CrossRefPubMedGoogle Scholar
  63. Mok MC (1994) Cytokinins and plant development—an overview. In: Mok DWS, Mok MC (eds) Cytokinins—chemistry, activity, and function. CRC Press, Boca Raton, pp 155–166Google Scholar
  64. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185.  https://doi.org/10.1146/annurev.arplant.56.032604.144046 CrossRefPubMedGoogle Scholar
  65. Neuman H, Galpaz N, Cunningham FX, Zamir D, Hirschberg J (2014) The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J 78:80–93.  https://doi.org/10.1111/tpj.12451 CrossRefPubMedGoogle Scholar
  66. Nomura T, Sato T, Bishop GJ, Kamiya Y, Takatsuto S, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57:171–178.  https://doi.org/10.1016/S0031-9422(00)00440-4 CrossRefPubMedGoogle Scholar
  67. North HM, de Almeida A, Boutin J-P, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824.  https://doi.org/10.1111/j.1365-313X.2007.03094.x CrossRefPubMedGoogle Scholar
  68. Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288.  https://doi.org/10.1105/tpc.106.045443 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Patterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500.  https://doi.org/10.1104/pp.126.2.494 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Persson BC, Esberg B, Ólavsson Ó, Björk GR (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76:1152–1160.  https://doi.org/10.1016/0300-9084(94)90044-2 CrossRefPubMedGoogle Scholar
  71. Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MCE, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA 106:929–934.  https://doi.org/10.1073/pnas.0811683106 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80: 939–966. https://doi.org/10.1002/(sici)1097-0010(20000515)80:7<939::aid-jsfa644>3.0.co;2-cGoogle Scholar
  73. Rohmer M (1999) The discovery of a mevalonateindependent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574.  https://doi.org/10.1039/A709175C CrossRefPubMedGoogle Scholar
  74. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for early steps leading to isopentenyl diphosphate. Biochem J 295:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98:5838–5843.  https://doi.org/10.1073/pnas.091096298 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367.  https://doi.org/10.1007/BF02167631 CrossRefPubMedGoogle Scholar
  77. Ruzicka L, Wettstein A (1935) Synthetische Darstellung des Testishormons, Testosteron (Androsten 3-on-17-ol). Helv Chim Acta 18:1264–1275CrossRefGoogle Scholar
  78. Ruzicka L, Goldberg MW, Meyer J, Brüngger H, Eichenberger E (1934) Zur Kenntnis der Sexualhormone II. Über die Synthese des Testikelhormons (Androsteron) and Stereoisomere desselben durch Abbauhydrierter Sterine. Helv Chim Acta 17:1395–1406CrossRefGoogle Scholar
  79. Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977.  https://doi.org/10.1073/pnas.0500793102 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schwender J, Muller C, Zeidler J, Lichlenthaler HK (1999) Cloning and heterologous expression of a cDNA encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett 455:140–144.  https://doi.org/10.1016/S0014-5793(99)00849-2 CrossRefPubMedGoogle Scholar
  82. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111:1640–1645.  https://doi.org/10.1073/pnas.1314805111 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731CrossRefPubMedGoogle Scholar
  84. Skoog F, Armstrong DJ (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384CrossRefGoogle Scholar
  85. Skoog F, Armstrong DJ, Cherayil JD, Hampel AE, Bock RM (1966) Cytokinin activity: localization in transfer RNA preparations. Science 154:1354–1356CrossRefPubMedGoogle Scholar
  86. Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410.  https://doi.org/10.1074/jbc.M102130200 CrossRefPubMedGoogle Scholar
  87. Tarkowská D, Strnad M (2016) Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones. Planta 244:545–555.  https://doi.org/10.1007/s00425-016-2561-z CrossRefPubMedGoogle Scholar
  88. Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, Rolčík J, Strnad M (2014) Quo vadis plant hormone analysis? Planta 240:55–76.  https://doi.org/10.1007/s00425-014-2063-9 CrossRefPubMedGoogle Scholar
  89. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106.  https://doi.org/10.1007/10_2014_295 PubMedGoogle Scholar
  90. Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147.  https://doi.org/10.1104/pp.15.00325 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200.  https://doi.org/10.1038/nature07272 CrossRefPubMedGoogle Scholar
  92. Urbanová T, Tarkowská D, Strnad P, Hedden P (2011) Gibberellins–terpenoid plant hormones: biological importance and chemical analysis. Collect Czech Chem Commun 76:1669–1686.  https://doi.org/10.1135/cccc2011098 CrossRefGoogle Scholar
  93. Vreman HJ, Thomas R, Corse J (1978) Cytokinins in tRNA obtained from Spinacia oleracea L. leaves and isolated chloroplasts. Plant Physiol 61:296–306CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vyroubalová Š, Václavíková K, Turečková V, Novák O, Šmehilová M, Hluska T, Ohnoutková L, Frébort I, Galuszka P (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151:433–447.  https://doi.org/10.1104/pp.109.142489 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ward JL, Gaskin P, Brown RGS, Jackson GS, Hedden P, Phillips AL, Willis CL, Beale MH (2002) Probing the mechanism of loss of carbon-20 in gibberellin biosynthesis. Synthesis of gibberellin 3α, 20-hemiacetal and 19, 20-lactol analogues and their metabolism by a recombinant GA 20-oxidase. J Chem Soc Perkin Trans 1:232–241.  https://doi.org/10.1039/B106990J Google Scholar
  96. Wolf DE, Hoffmann CH, Aldrich PE, Skeggs HR, Wright LD, Folkers K (1956) β-Hydroxy-β-methyl-Δ-dihydroxy-β-methylvaleric acid (divalonic acid), a new biological factor. J Am Chem Soc 78:4499CrossRefGoogle Scholar
  97. Xing SF, Miao J, Li SA, Qin GJ, Tang S, Li HN, Gu HY, Qu LJ (2010) Disruption of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res 20:688–700.  https://doi.org/10.1038/cr.2010.54 CrossRefPubMedGoogle Scholar
  98. Xu S, Patterson GW, Lusby WR, Schmid KM, Salt TA (1990) The distribution and phylogenetic significance of desmethylsterols in Chenopodium and Atriplex: coexistence of Δ7- and Δ5-sterols. Lipids 25:61–64.  https://doi.org/10.1007/BF02562429 CrossRefGoogle Scholar
  99. Yabuta T, Sumiki Y (1938) On the crystal of gibberellin, a substance to promote plant growth. J Agric Chem Soc Jpn 14:1526Google Scholar
  100. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251.  https://doi.org/10.1146/annurev.arplant.59.032607.092804 CrossRefGoogle Scholar
  101. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491.  https://doi.org/10.1002/ps.1706 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CRPalacký UniversityOlomoucCzechia

Personalised recommendations