, Volume 247, Issue 4, pp 875–886 | Cite as

The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2)

  • Yong Chan Park
  • Sandeep Chapagain
  • Cheol Seong JangEmail author
Original Article


Main conclusion

Our results suggest that a rice E3 ligase, OsMAR1, physically interacts with a cytosolic protein OCPI2 and may play an important role under salinity stress.

Salt is an important abiotic stressor that negatively affects plant growth phases and alters development. Herein, we found that a rice gene, OsMAR1 (Oryza sativa microtubule-associated RING finger protein 1), encoding the RING E3 ligase was highly expressed in response to high salinity, water deficit, and ABA treatment. Fluorescence signals of its recombinant proteins were clearly associated with the microtubules in rice protoplasts. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) showed that OsMAR1 interacted with a cytosolic protein OCPI2 (O. sativa chymotrypsin protease inhibitor 2) and led to its degradation via the 26S proteasome. Heterogeneous overexpression of OsMAR1 in Arabidopsis showed retarded root growth compared with that of control plants, and then led to hypersensitivity phenotypes under high salinity stress. Taken together, OsMAR1 negatively regulates the salt-stress response via the regulation of the OCPI2 protein in rice.


Microtubule Heterogeneous overexpression OsMAR1 OCPI2 Rice RING finger protein Salt stress 



Oryza sativa chymotrypsin protease inhibitor 2


Oryza sativa microtubule-associated RING finger protein 1





This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2016R1A2B4015626).

Supplementary material

425_2017_2834_MOESM1_ESM.pdf (42 kb)
Supplementary material 1 (PDF 42 kb)
425_2017_2834_MOESM2_ESM.pdf (42 kb)
Supplementary material 2 (PDF 41 kb)


  1. Alexandros S, Maria G, Aifantis I (2014) Regulation of stem cell function by protein ubiquitylation. EMBO Rep 15:365–382CrossRefGoogle Scholar
  2. Amira MS, Qados A (2011) Effect of salt stress on plant growth and metabolism of bean plants Vicia fata (L.). J Saudi Soc Agri Sci 10:7–15Google Scholar
  3. Aranda-Orgillés B, Aigner J, Kunath M, Lurz R, Schneider R, Schweiger S (2008) Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS One 2A(3):e3507CrossRefGoogle Scholar
  4. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434CrossRefPubMedGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  6. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1471–2229CrossRefGoogle Scholar
  7. Dametto A, Buffon G, Blasi EADR, Sperotto RA (2015) Ubiquitination pathway as a target to develop abiotic stress tolerance in rice. Plant Signal Behav 10:e1057369CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434CrossRefPubMedGoogle Scholar
  10. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plants cold responses, HOS1, is a RING E3 ligase that mediated the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du H, Huang Y, Zaghlula M, Walters E, Cox TC, Massiah MA (2013) The MID1 E3 ligase catalyzes the polyubiquitination of alpha4 (alpha4), a regulatory subunit of protein phosphatase 2A (PP2A): novel insight into MID1-mediated regulation of PP2A. J Biol Chem 288:21341–21350CrossRefPubMedPubMedCentralGoogle Scholar
  12. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484CrossRefPubMedGoogle Scholar
  13. Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15:170CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596–701613Google Scholar
  15. Hamada T, Ueda H, Kawase T, Hara-Nishimura I (2014) Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiol 166:1869–1876CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang Y, Fazili KM (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85CrossRefPubMedGoogle Scholar
  17. Hwang SG, Kim JJ, Lim SD, Park YC, Moon JC, Jang CS (2016) Molecular dissection of Oryza sativa salt-induced RING finger protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol Plant 158:168–179CrossRefPubMedGoogle Scholar
  18. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458CrossRefGoogle Scholar
  19. Joo HH, Lim CW, Han S-W, Lee SC (2017) The pepper RING finger E3 ligase, CaDIR1, regulates the drought stress response via ABA-mediated signaling. Front Plant Sci 8:690. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y (2013) The E3 ligase AtRDUF1 positively regulates salt stress response in Arabidopsis thaliana. PLoS One 8:e71078CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lim SD, Lee CH, Jang CS (2014) The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Plant Cell Environ 37:1097–1113CrossRefPubMedGoogle Scholar
  24. Lim SD, Jung CG, Park YC, Lee SC, Lee CH, Lim CW, Kim DS, Jang CS (2015) Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Mol Biol 89:365–384CrossRefPubMedGoogle Scholar
  25. Lyengar PV, Hirota T, Hirose S, Nakamura B (2011) Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 286:39082–39090CrossRefGoogle Scholar
  26. Mazzucotelli E, Belloni S, Marone D, De Leonardis AM, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo AM (2006) The E3 ubiquitin ligase gene family in plats: regulation by degradation. Curr Genom 7:509–522CrossRefGoogle Scholar
  27. Milosavljevic D, Kontush A, Griglio S, Le Naour G, Thillet J, Chapman MJ (2003) VLDL-induced triglyceride accumulation in human macrophages is mediated by modulation of LPL lipolytic activity in the absence of change in LPL mass. Biochim Biophys Acta 1631:51–60CrossRefPubMedGoogle Scholar
  28. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406CrossRefGoogle Scholar
  29. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  30. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349CrossRefPubMedGoogle Scholar
  31. Park YC, Kim JJ, Kim DS, Jang CS (2015) Rice RING E3 ligase may negatively regulate gamma-ray response to mediated the degradation of photosynthesis-related proteins. Planta 241:1119–1129CrossRefPubMedGoogle Scholar
  32. Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cells 39:447–459CrossRefPubMedPubMedCentralGoogle Scholar
  33. Petrášek J, Schwarzerová K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12:728–734CrossRefPubMedGoogle Scholar
  34. Qin F, Sakuma Y, Tran LSP, Maruyama K, Kidokoro S, Fujita Y, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought responsive gene expression. Plant Cell 20:1693–1707CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263CrossRefGoogle Scholar
  36. Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants (Basel) 3:458–475CrossRefGoogle Scholar
  37. Serino G, Xie Q (2013) The ever expanding role of ubiquitin and SUMO in plant biology. J Integr Plant Biol 55:5–6CrossRefPubMedGoogle Scholar
  38. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plants growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131CrossRefPubMedGoogle Scholar
  39. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590CrossRefPubMedGoogle Scholar
  40. Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tian M, Lou L, Liu L, Yu F, Zhao Q, Zhang H, Wu Y, Tang S, Xia R, Zhu B, Serino G, Xie Q (2015) The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. Plant J 82:81–92CrossRefPubMedGoogle Scholar
  42. Tiwari LD, Mittal D, Mishra RC, Grover A (2015) Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. Plant Physiol Biochem 92:48–55CrossRefPubMedGoogle Scholar
  43. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397CrossRefPubMedGoogle Scholar
  44. Wang H, Wu Z, Zhou Y, Han J, Shi D (2012) Effects of alt stress on ion balance and nitrogen metabolism in rice. Plant Soil Environ 2:62–67Google Scholar
  45. Zeng D-E, Hou P, Xiao F, Liu Y (2014) Overexpressing a novel RING-H2 finger protein gene, OsRHP1, enhances drought and salt tolerance in rice (Oryza sativa L). J Plant Biol 57:357–365CrossRefGoogle Scholar
  46. Zhang S, Qi Y, Liu M, Yang C (2013) SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana. J Integr Plant Biol 55:83–95CrossRefPubMedGoogle Scholar
  47. Zhang H, Chi F, Wu Y, Lou L, Liu L, Tina M, Ning Y, Shu K, Tang S, Xie Q (2015) The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27:214–227CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Plant Genomics Lab, Department of Applied Plant SciencesKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations