Advertisement

Planta

, Volume 247, Issue 1, pp 201–214 | Cite as

Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea

  • Abhijit Arun Daspute
  • Yuriko Kobayashi
  • Sanjib Kumar Panda
  • Bashasab Fakrudin
  • Yasufumi Kobayashi
  • Mutsutomo Tokizawa
  • Satoshi Iuchi
  • Arbind Kumar Choudhary
  • Yoshiharu Y. Yamamoto
  • Hiroyuki KoyamaEmail author
Original Article

Abstract

Main conclusion

Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter.

The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3′ sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3′ flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.

Keywords

Aluminum Cis-elements Citrate Hairy roots MATE 

Abbreviations

ALMT1

Aluminum-activated malate transporter 1

ALS3

Aluminum-sensitive 3

MATE

Multidrug and toxic compound exclusion

OA

Organic acid

STOP1

Sensitive to proton rhizotoxicity 1

Notes

Acknowledgements

This work was funded by a scientific research Grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (15H04468).

Supplementary material

425_2017_2777_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5371 kb)

References

  1. Choudhary AK, Singh D (2011) Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity. Physiol Mol Biol Plants 17:145–152CrossRefPubMedPubMedCentralGoogle Scholar
  2. Choudhary AK, Singh D, Iquebal MA (2011) Selection of pigeonpea genotypes for tolerance to aluminum toxicity. Plant Breed 130:492–495CrossRefGoogle Scholar
  3. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fan W, Lou HQ, Gong YL, Liu MY, Cao MJ, Liu Y, Yang JL, Zheng SJ (2015) Characterization of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. New Phytol 208:456–468CrossRefPubMedGoogle Scholar
  5. Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268CrossRefPubMedPubMedCentralGoogle Scholar
  6. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091CrossRefPubMedGoogle Scholar
  7. Hampp R, Goller M, Füllgraf H (1984) Determination of compartmented metabolite pools by a combination of rapid fractionation of oat mesophyll protoplasts and enzymic cycling. Plant Physiol 75:1017–1021CrossRefPubMedPubMedCentralGoogle Scholar
  8. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68CrossRefPubMedGoogle Scholar
  9. Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667CrossRefPubMedPubMedCentralGoogle Scholar
  10. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and co-regulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908CrossRefPubMedGoogle Scholar
  12. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152CrossRefPubMedGoogle Scholar
  13. Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162:732–740CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRefGoogle Scholar
  17. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493CrossRefPubMedGoogle Scholar
  18. Kochian LV, Pineros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598CrossRefPubMedGoogle Scholar
  19. Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363CrossRefPubMedGoogle Scholar
  20. Liang C, Pineros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu J, Li Y, Wang W, Gai J, Li Y (2016) Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genom 17:223CrossRefGoogle Scholar
  22. Ma JF, Zheng SJ, Matsumoto H (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol 38:1019–1025CrossRefGoogle Scholar
  23. Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335–1341CrossRefPubMedGoogle Scholar
  24. Macias JM, Rivera JOOR, Alanís GD, Villalobos LY, Aburto AO, González JR et al (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci USA 114:3563–3572CrossRefGoogle Scholar
  25. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genetics 39:1156–1161CrossRefPubMedGoogle Scholar
  26. Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740CrossRefPubMedGoogle Scholar
  27. Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737–743CrossRefPubMedPubMedCentralGoogle Scholar
  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  29. Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H (2013) Characterization of AtSTOP1 orthologous genes in tobacco and other plant species. Plant Physiol 162:1937–1946CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795CrossRefGoogle Scholar
  31. Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 240:645–664CrossRefPubMedGoogle Scholar
  32. Sasaki T, Yamamoto Y, Ezaki Y, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum activated malate transporter. Plant J 37:645–653CrossRefPubMedGoogle Scholar
  33. Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K et al (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 136:4205–4214Google Scholar
  34. Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sawaki Y, Kihara-Doi T, Kobayashi Y, Nishikubo N, Kawazu T, Kobayashi Y, Koyama H, Sato S (2013) Characterization of Al-responsive citrate excretion and citrate transporting MATEs in Eucalyptus camaldulensis. Planta 237:979–989CrossRefPubMedGoogle Scholar
  36. Sawaki Y, Kobayashi Y, Kihara-Doi T, Nishikubo N, Kawazu T, Kobayashi M, Kobayashi Y, Iuchi S, Koyama H, Sato S (2014) Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Sci 223:8–15CrossRefPubMedGoogle Scholar
  37. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025CrossRefPubMedGoogle Scholar
  38. Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds and other tissues of Arabidopsis thaliana. Biotechniques 37:542–544PubMedGoogle Scholar
  39. Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100:309–318CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCTIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiol 167:991–1003CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsutsui T, Yamaji N, Ma J (2011) Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156:925–931CrossRefPubMedPubMedCentralGoogle Scholar
  42. Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89CrossRefGoogle Scholar
  43. Wang J, Hou Q, Li P, Yang L, Sun X, Benedito VA, Wen J, Chen B, Mysore KS, Zhao J (2017) Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. Plant J 90:79–95CrossRefPubMedGoogle Scholar
  44. Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yamamoto YY, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi Shinozaki K, Tokizawa M, Koyama H (2011) Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol 11:39CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H (2001) Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant 113:64–71CrossRefGoogle Scholar
  47. Yang XY, Yang JL, Zhou Y, Piñeros MA, Kochian LV, Li GX, Zheng SJ (2011) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ 34:2138–2148CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Abhijit Arun Daspute
    • 1
  • Yuriko Kobayashi
    • 1
  • Sanjib Kumar Panda
    • 2
  • Bashasab Fakrudin
    • 3
  • Yasufumi Kobayashi
    • 4
  • Mutsutomo Tokizawa
    • 1
  • Satoshi Iuchi
    • 5
  • Arbind Kumar Choudhary
    • 6
  • Yoshiharu Y. Yamamoto
    • 1
  • Hiroyuki Koyama
    • 1
    Email author
  1. 1.Laboratory of Plant Cell Technology, Faculty of Applied Biological SciencesGifu UniversityGifuJapan
  2. 2.Plant Molecular Biotechnology Laboratory, Department of Life Science and BioinformaticsAssam UniversitySilcharIndia
  3. 3.Department of Biotechnology and Crop Improvement, Post Graduate CentreUniversity of Horticultural SciencesBengaluruIndia
  4. 4.Department of Biosciences and BioengineeringIndian Institute of TechnologyGuwahatiIndia
  5. 5.RIKEN BioResource CenterIbarakiJapan
  6. 6.ICAR Research Complex for Eastern RegionPatnaIndia

Personalised recommendations