Advertisement

Planta

, Volume 246, Issue 6, pp 1215–1231 | Cite as

The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants

  • Ronghao Cai
  • Wei Dai
  • Congsheng Zhang
  • Yan Wang
  • Min Wu
  • Yang Zhao
  • Qing Ma
  • Yan XiangEmail author
  • Beijiu ChengEmail author
Original Article

Abstract

Main conclusion

We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes.

The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

Keywords

ABA Maize RNA-seq Salt stress WRKY transcription factor ZmWRKY17 

Abbreviations

MDA

Malondialdehyde

REL

Relative electrical leakage

TF

Transcription factor

Tu

Sodium tungstate

Notes

Acknowledgements

We thank Chuanxiao Xie from Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, for offering us the maize and Arabidopsis seeds in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by the National Key Research and Development Program (2017YFD0101205) and the Key Technologies Research and Development Program of Anhui Province (15czz03119).

Supplementary material

425_2017_2766_MOESM1_ESM.tif (10 mb)
Supplementary material 1 Fig. S1 Transcriptome analyses of WT and transgenic Arabidopsis plants overexpressing ZmWRKY17 gene. a The number of the significantly differentially expressed transcripts in WT and transgenic line (L10) after salt treatment. WT, wild type (untreated); WTNA, wild type treated with NaCl solution for 6 h; L10, transgenic line (untreated); L10NA, transgenic line treated with NaCl solution for 6 h. b Go analysis of wild Arabidopsis transcriptome after salt treatment in Solexa. c Go analysis of transgenic Arabidopsis transcriptome after salt treatment in Solexa (TIFF 10212 kb)
425_2017_2766_MOESM2_ESM.tif (9.2 mb)
Supplementary material 2 Fig. S2 Expression levels of stress-responsive genes in WT and two transgenic lines in response to salt stress. The induction of stress-responsive genes (RD29A, RD29B, RD22, KIN1, MYB101, NAC019 and NCED5) were measured by qRT-PCR analysis. Actin2 was used as the internal control. Data represent mean ± SD of three replicates (TIFF 9404 kb)
425_2017_2766_MOESM3_ESM.doc (64 kb)
Supplementary material 3 (DOC 64 kb)
425_2017_2766_MOESM4_ESM.xls (3.6 mb)
Supplementary material 4 (XLS 3657 kb)
425_2017_2766_MOESM5_ESM.xls (58 kb)
Supplementary material 5 (XLS 57 kb)
425_2017_2766_MOESM6_ESM.xls (54 kb)
Supplementary material 6 (XLS 53 kb)

References

  1. Bakshi M, Oelmüller R (2014) WRKY transcription factors: jack of many trades in plants. Plant Signal Behav 9:e27700–e27700CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrero JM, Piqueras P, Gonzalez-Guzman M, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083CrossRefPubMedGoogle Scholar
  3. Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inze D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640CrossRefPubMedGoogle Scholar
  4. Cai RH, Zhao Y, Wang YF, Lin YX, Peng XJ, Li Q, Chang YW, Jiang HY, Xiang Y, Cheng BJ (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Culture 119:565–577CrossRefGoogle Scholar
  5. Cao YP, Han YH, Li DH, Lin Y, Cai YP (2016) MYB transcription factors in Chinese pear (Pyrus bretschneideri Rehd.): genome-wide identification, classification, and expression profiling during fruit development. Front. Plant Sci 7:577Google Scholar
  6. Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110:E1963–E1971CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein–protein interactions in the regulation of WRKY transcription factors. Mol Plant 6:287–300CrossRefPubMedGoogle Scholar
  9. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206CrossRefPubMedGoogle Scholar
  10. Hong CY, Cheng D, Zhang GQ, Zhu DD, Chen YH, Tan MP (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482:1504–1510CrossRefPubMedGoogle Scholar
  11. Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Genet Genom 244:563–571Google Scholar
  12. Jiang YQ, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genom 282:503–516CrossRefGoogle Scholar
  13. Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388CrossRefPubMedGoogle Scholar
  14. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360CrossRefPubMedPubMedCentralGoogle Scholar
  16. Keyster M, Klein A, Ludidi N (2012) Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signal Behav 7:349–360CrossRefPubMedPubMedCentralGoogle Scholar
  17. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189CrossRefPubMedGoogle Scholar
  19. Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693CrossRefPubMedGoogle Scholar
  20. Li SJ, Zhou X, Chen LG, Huang WD, Yu DQ (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483CrossRefPubMedGoogle Scholar
  21. Li DF, Zhang YQ, Hu XN, Shen XY, Ma L, Su Z, Wang T, Dong JL (2011a) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li MR, Lin XJ, Li HQ, Pan XP, Wu GJ (2011b) Overexpression of AtNHX5 improves tolerance to both salt and water stress in rice (Oryza sativa L.). Plant Cell Tissue Organ Culture 107:283–293CrossRefGoogle Scholar
  23. Li H, Gao Y, Xu H, Dai Y, Deng DQ, Chen JM (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216CrossRefGoogle Scholar
  24. Li PL, Song AP, Gao CY, Wang LX, Wang YJ, Sun J, Jiang JF, Chen FD, Chen SM (2015) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep 34:1365–1378CrossRefPubMedGoogle Scholar
  25. Liu HY, Yang WL, Liu DC, Han YP, Zhang AM, Li SH (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427CrossRefPubMedGoogle Scholar
  26. Liu JF, Ding J, Yuan BF, Feng YQ (2014) Magnetic solid phase extraction coupled with in situ derivatization for the highly sensitive determination of acidic phytohormones in rice leaves by UPLC–MS/MS. Analyst 139:5605–5613CrossRefPubMedGoogle Scholar
  27. Luo X, Bai X, Sun XL, Zhu D, Liu BH, Ji W, Cai H, Cao L, Wu J, Hu MR, Liu X, Tang LL, Zhu YM (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 64:2155–2169CrossRefPubMedGoogle Scholar
  28. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  29. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  30. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655CrossRefPubMedPubMedCentralGoogle Scholar
  32. Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS, Lim CO, Cho MJ (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550CrossRefPubMedGoogle Scholar
  33. Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498CrossRefPubMedGoogle Scholar
  34. Qin Z, Lv HJ, Zhu XL, Meng C, Quan TY, Wang MC, Xia GM (2013) Ectopic expression of a wheat WRKY transcription factor gene TaWRKY71-1 results in hyponastic leaves in Arabidopsis thaliana. PLoS One 8:e63033CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ren XZ, Chen ZZ, Liu Y, Zhang HR, Zhang M, Liu QA, Hong XH, Zhu JK, Gong ZZ (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606CrossRefPubMedGoogle Scholar
  37. Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133CrossRefPubMedGoogle Scholar
  38. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258CrossRefPubMedGoogle Scholar
  40. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11CrossRefPubMedGoogle Scholar
  41. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  42. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shen YH, Godlewski J, Bronisz A, Zhu J, Comb MJ, Avruch J, Tzivion G (2003) Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding. Mol Biol Cell 14:4721–4733CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shi WN, Hao LL, Li J, Liu DD, Guo XQ, Li H (2014) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33:483–498CrossRefPubMedGoogle Scholar
  45. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G, Yang G (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35CrossRefPubMedGoogle Scholar
  47. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tripathi P, Rabara RC, Langum TJ, Boken AK, Rushton DL, Boomsma DD, Rinerson CI, Rabara J, Reese RN, Chen X, Rohila JS, Rushton PJ (2012) The WRKY transcription factor family in Brachypodium distachyon. BMC Genom 13:270CrossRefGoogle Scholar
  49. Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498CrossRefPubMedGoogle Scholar
  50. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839CrossRefPubMedPubMedCentralGoogle Scholar
  51. van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vanderauwera S, Vandenbroucke K, Inze A, van de Cotte B, Muhlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MCE, Van Breusegem F (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:20113–20118CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  54. Wang XB, Zhang HW, Sun GL, Jin Y, Qiu LJ (2014) Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene 543:237–243CrossRefPubMedGoogle Scholar
  55. Wang XB, Li DD, Jiang JJ, Dong ZR, Ma YS (2016) Soybean NAC gene family: sequence analysis and expression under low nitrogen supply. Biol Plant 61:473–482. doi: 10.1007/s10535-016-0693-4 CrossRefGoogle Scholar
  56. Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164CrossRefPubMedPubMedCentralGoogle Scholar
  57. Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242CrossRefPubMedGoogle Scholar
  58. Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470CrossRefPubMedGoogle Scholar
  59. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139CrossRefPubMedGoogle Scholar
  60. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36CrossRefPubMedPubMedCentralGoogle Scholar
  61. Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yan HR, Jia HH, Chen XB, Hao LL, An HL, Guo XQ (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076CrossRefPubMedGoogle Scholar
  63. Zhang SJ, Li N, Gao F, Yang AF, Zhang JR (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465CrossRefGoogle Scholar
  64. Zhao L, Gao LP, Wang HX, Chen XT, Wang YS, Yang H, Wei CL, Wan XC, Xia T (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genom 13:75–98CrossRefGoogle Scholar
  65. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503CrossRefPubMedGoogle Scholar
  66. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ronghao Cai
    • 1
  • Wei Dai
    • 1
  • Congsheng Zhang
    • 1
  • Yan Wang
    • 1
  • Min Wu
    • 1
  • Yang Zhao
    • 1
  • Qing Ma
    • 1
  • Yan Xiang
    • 1
    • 2
    Email author
  • Beijiu Cheng
    • 1
    Email author
  1. 1.National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life SciencesAnhui Agricultural UniversityHefeiChina
  2. 2.Laboratory of Modern Biotechnology, School of Forestry and Landscape ArchitectureAnhui Agricultural UniversityHefeiChina

Personalised recommendations