, Volume 246, Issue 6, pp 1083–1096 | Cite as

The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis

  • Viviana Martins
  • Filipa Carneiro
  • Carlos Conde
  • Mariana Sottomayor
  • Hernâni Gerós
Original Article


Main conclusion

The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate.

Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100–200 mM Ca2+, demonstrating a role in Ca2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na+, Li+, Mn2+ and Cu2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca2+, and Na+ in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.


Calcium transport Cation homeostasis CAX-type proteins Heterologous expression Vacuole Vitis 



H+/cation exchanger


Green (red, yellow) fluorescent protein


Methyl jasmonate


Auto inhibitory domain


Regulatory-dependent region



The authors thank Professor Kyle W. Cunningham (Department of Biology, Johns Hopkins University, USA) for providing the yeast strain K667. The authors also acknowledge Professor Manuela Côrte-Real and Dr. Nuria Genicio Bouza (Department of Biology, University of Minho, Portugal) for technical support in flow cytometry and critical analysis of the results. This work is supported by European investment funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internationalization Programme, under the Projects INTERACT-NORTE-01-0145-FEDER-000017-Linha VitalityWine-ON 0013 and POCI-01-0145-FEDER-006958, and by National Funds by FCT–Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013, and CherryCrackLess (PTDC/AGR-PRO/7028/2014). VM was supported by a FCT postdoctoral Grant (SFRH/BPD/107905/2015).

Supplementary material

425_2017_2754_MOESM1_ESM.pdf (236 kb)
Supplementary material 1 (PDF 235 kb)
425_2017_2754_MOESM2_ESM.pdf (215 kb)
Supplementary material 2 (PDF 214 kb)
425_2017_2754_MOESM3_ESM.pdf (87 kb)
Supplementary material 3 (PDF 86 kb)
425_2017_2754_MOESM4_ESM.pdf (147 kb)
Supplementary material 4 (PDF 147 kb)


  1. Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform 9:465CrossRefGoogle Scholar
  2. Cabanne C, Donèche B (2003) Calcium accumulation and redistribution during the development of grape berry. Vitis 42:19–21Google Scholar
  3. Cagnac O, Aranda-Sicilia MN, Leterrier M, Rodriguez-Rosales MP, Venema K (2010) Vacuolar cation/H+ antiporters of Saccharomyces cerevisiae. J Biol Chem 285:33914–33922CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai X, Lytton J (2004) The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol Biol Evol 21:1692–1702CrossRefPubMedGoogle Scholar
  5. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen H, Zhang X (2014) Subcellular localization of CAX proteins in plants. Mol Soil Biol 6:1–5Google Scholar
  7. Cheng N-H, Pittman JK, Shigaki T, Hirschi KD (2002) Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiol 128:1245–1254CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng N-H, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng N-H, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cho D, Villiers F, Kroniewicz L, Lee S, Seo YJ, Hirschi KD, Leonhardt N, Kwak JM (2012) Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol 160:1293–1302CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chung MY, Han J-S, Giovannoni J, Liu Y, Kim C-K, Lim KB, Chung JD (2010) Modest calcium increase in tomatoes expressing a variant of Arabidopsis cation/H+ antiporter. Plant Biotechnol Rep 4:15–21CrossRefGoogle Scholar
  12. Conde C, Silva S, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1:1–22Google Scholar
  13. Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng N-H, Stancombe MA, Hirschi KD, Webb AAR, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:100–110CrossRefGoogle Scholar
  15. Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237CrossRefPubMedPubMedCentralGoogle Scholar
  16. Descendit A, Ramawat KG, Waffo P, Deffieux G, Badoc A, Merillon JM (1996) Anthocyanins, catechins, condensed tannins and piceid production in Vitis vinifera cell bioreactor cultures. Biotechnol Lett 18:659–662CrossRefGoogle Scholar
  17. Emery L, Whelan S, Hirschi KD, Pittman JK (2012) Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants. Front Plant Sci 3:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fontes N, Silva R, Vignault C, Lecourieux F, Gerós H, Delrot S (2010) Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  19. Freitas ST, Amaranteb CVT, Labavitcha JM, Mitchama EJ (2010) Cellular approach to understand bitter pit development in apple fruit. Postharvest Biol Technol 57:6–13CrossRefGoogle Scholar
  20. Gainza-Cortés F, Pérez-Dïaz R, Pérez-Castro R, Tapia J, Casaretto JA, González S, Peña-Cortés H, Ruiz-Lara S, González E (2012) Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biol 12:111CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garcia-Molina A, Andrés-Colás N, Perea-García A, del Valle-Tascón S, Peñarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860CrossRefPubMedGoogle Scholar
  22. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. P Natl Acad Sci USA 93:8782–8786CrossRefGoogle Scholar
  25. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hu X, Li W, Chen Q, Yang Y (2009) Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signal Behav 4:696–697CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang X-M, Huang H-B, Wang H-C (2005) Cell walls of loosening skin in post-veraison grape berries lose structural polysaccharides and calcium while accumulate structural proteins. Sci Hortic 104:249–263CrossRefGoogle Scholar
  28. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  29. Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kamiya T, Maeshima M (2004) Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations. J Biol Chem 279:812–819CrossRefPubMedGoogle Scholar
  31. Kamiya T, Akahori T, Ashikari M, Maeshima M (2006) Expression of the vacuolar Ca2+/H+ exchanger, OsCAX1a, in rice: cell and age specificity of expression, and enhancement by Ca2+. Plant Cell Physiol 47:96–106CrossRefPubMedGoogle Scholar
  32. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  33. Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Neuhaus HE, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404CrossRefPubMedGoogle Scholar
  34. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810CrossRefPubMedGoogle Scholar
  35. Kumar A, Singh UM, Manohar M, Gaur VS (2015) Calcium transport from source to sink: understanding the mechanism(s) of acquisition, translocation, and accumulation for crop biofortification. Acta Physiol Plant 37:1722CrossRefGoogle Scholar
  36. Luo GZ, Wang HW, Huang J, Tian A-G, Wang Y-J, Zhang J-S, Chen S-Y (2005) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol 59:809–820CrossRefPubMedGoogle Scholar
  37. Manohar M, Shigaki T, Hirschi KD (2011) Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. Plant Biol 13:561–569CrossRefPubMedGoogle Scholar
  38. Martins V, Cunha A, Gerós H, Hanana M, Blumwald E (2012a) Mineral compounds in grape berry. In: Gerós H, Chaves M-M, Delrot S (eds) The biochemistry of the grape berry. Bentham eBooks, Bentham Science Publishers, pp 23–43Google Scholar
  39. Martins V, Hanana M, Blumwald E, Gerós H (2012b) Copper transport and compartmentation in grape cells. Plant Cell Physiol 53:1866–1880CrossRefPubMedGoogle Scholar
  40. Martins V, Bassil E, Hanana M, Blumwald E, Gerós H (2014a) Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1. Planta 240:91–101CrossRefPubMedGoogle Scholar
  41. Martins V, Teixeira A, Bassil E, Hanana M, Blumwald E, Gerós H (2014b) Copper-based fungicide Bordeaux mixture regulates the expression of Vitis vinifera copper transporters (VvCTrs). Aust J Grape Wine Res 20:451–458CrossRefGoogle Scholar
  42. Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58:3419–3427CrossRefPubMedGoogle Scholar
  43. Melchionda M, Pittman JK, Mayor R, Pate S (2016) Ca2+/H+exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 212:803–813CrossRefPubMedPubMedCentralGoogle Scholar
  44. Morris J, Hawthorne KM, Hotze T, Abrams SA, Hirschi KD (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA 105:1431–1435CrossRefPubMedPubMedCentralGoogle Scholar
  45. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  46. Park S, Kim C-K, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282CrossRefGoogle Scholar
  47. Park S, Cheng N-H, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206CrossRefPubMedPubMedCentralGoogle Scholar
  48. Park S, Kang T-S, Kim C-K, Han J-S, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603CrossRefPubMedGoogle Scholar
  49. Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E IV, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:106–117CrossRefPubMedGoogle Scholar
  50. Pittman JK (2011) Vacuolar Ca2+ uptake. Cell Calcium 50:139–146CrossRefPubMedGoogle Scholar
  51. Pittman JK (2012) Multiple transport pathways for mediating intracellular pH homeostasis: the contribution of H+/ion exchangers. Front Plant Sci 3:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pittman JK, Hirschi KD (2016) CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biol 18:741–749CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pittman JK, Shigaki T, Cheng N-H, Hirschi KD (2002a) Mechanism of N-terminal autoinhibition in the Arabidopsis Ca2+/H+ antiporter CAX1. J Biol Chem 277:26452–26459CrossRefPubMedGoogle Scholar
  54. Pittman JK, Sreevidya CS, Shigaki T, Ueoka-Nakanishi H, Hirschi KD (2002b) Distinct N-terminal regulatory domains of Ca2+/H+ antiporters. Plant Physiol 130:1054–1062CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pittman JK, Shigaki T, Marshall JL, Morris JL, Cheng NH, Hirschi KD (2004) Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol Biol 56:959–971CrossRefPubMedGoogle Scholar
  56. Pittman JK, Shigaki T, Hirschi KD (2005) Evidence of differential pH regulation of the Arabidopsis vacuolar Ca2+/H+ antiporters CAX1 and CAX2. FEBS Lett 579:2648–2656CrossRefPubMedGoogle Scholar
  57. Qi BS, Li CG, Chen YM, Lu PL, Hao FS, Shen GM, Chen J, Wang XC (2005) Functional analysis of rice Ca2+/H+ antiporter OsCAX3 in yeast and its subcellular localization in plant. Prog Biochem Biophys 32:876–881Google Scholar
  58. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT–PCR during berry development. BMC Plant Biol 6:27CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632CrossRefGoogle Scholar
  60. Shigaki T, Cheng NH, Pittman JK, Hirschi KD (2001) Structural determinants of Ca2+ transport in the Arabidopsis H+/Ca2+ antiporter CAX1. J Biol Chem 276:43152–43159CrossRefPubMedGoogle Scholar
  61. Shigaki T, Sreevidya C, Hirschi KD (2002) Analysis of the Ca2+ domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3. Plant Mol Biol 50:475–483CrossRefPubMedGoogle Scholar
  62. Shigaki T, Barkla BJ, Miranda-Vergara MC, Zhao J, Pantoja O, Hirschi KD (2005) Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H+ exchanger CAX1. J Biol Chem 280:30136–30142CrossRefPubMedGoogle Scholar
  63. Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825CrossRefPubMedGoogle Scholar
  64. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion protein in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025CrossRefPubMedGoogle Scholar
  65. Sun Q-P, Guo Y, Sun Y, Sun D-Y, Wang X-J (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana. J Plant Res 119:343–350CrossRefPubMedGoogle Scholar
  66. Tuteja N, Mahajan S (2007) Calcium signaling network in plants. Plant Signal Behav 2:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ueoka-Nakanishi H, Tsuchiya T, Sasaki M, Nakanishi Y, Cunningham KW, Maeshima M (2000) Functional expression of mung bean Ca2+/H+ antiporter in yeast and its intracellular localization in the hypocotyl and tobacco cells. Eur J Biochem 267:3090–3098CrossRefPubMedGoogle Scholar
  68. Van Mullem V, Wery M, De Bolle X, Vandenhaute J (2003) Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739–746CrossRefPubMedGoogle Scholar
  69. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227:659–669CrossRefPubMedGoogle Scholar
  71. Zhao J, Connorton JM, Guo Y, Li X, Shigaki T, Hirschi KD, Pittman JK (2009a) Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 284:34075–34083CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhao J, Shigaki T, Mei H, Guo Y, Cheng N-H, Hirschi KD (2009b) Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3. J Biol Chem 284:4605–4615CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas, CITAB-UMinho Pole, Departamento de Biologia, Escola de CiênciasUniversidade do MinhoBragaPortugal
  2. 2.i3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  3. 3.IBMC, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  4. 4.CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando QuintasVairãoPortugal
  5. 5.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  6. 6.Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Escola de CiênciasUniversidade do MinhoBragaPortugal
  7. 7.Centro de Engenharia Biológica (CEB)Universidade do MinhoBragaPortugal

Personalised recommendations