, Volume 246, Issue 4, pp 597–623 | Cite as

Regulation of stilbene biosynthesis in plants

  • A. S. DubrovinaEmail author
  • K. V. KiselevEmail author


Main conclusion

This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants.

Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.


Stilbene biosynthesis Resveratrol Plants Cell signaling Transcription factors Stilbene content and composition 



This work was supported by a Grant from the Russian Science Foundation (14-14-00366).

Supplementary material

425_2017_2730_MOESM1_ESM.doc (142 kb)
Supplementary material 1 (DOC 143 kb)


  1. Adachi H, Yoshioka H (2015) Kinase-mediated orchestration of NADPH oxidase in plant immunity. Brief Funct Genom 14:253–259CrossRefGoogle Scholar
  2. Adrian M, Jeandet P, Bessis R, Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride (AlCl3). J Agric Food Chem 44:1979–1981CrossRefGoogle Scholar
  3. Ahn SY, Kim SA, Choi SJ, Yun HK (2015) Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Hort Environ Biotechnol 56:36–43CrossRefGoogle Scholar
  4. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90PubMedCrossRefGoogle Scholar
  5. Aleynova OA, Dubrovina AS, Manyakhin AY, Karetin YA, Kiselev KV (2015) Regulation of resveratrol production in Vitis amurensis cell cultures by calcium-dependent protein kinases. Appl Biochem Biotech 175:1460–1476CrossRefGoogle Scholar
  6. Aleynova-Shumakova OA, Dubrovina AS, Manyakhin AY, Karetin YA, Kiselev KV (2014) VaCPK20 gene overexpression significantly increased resveratrol content and expression of stilbene synthase genes in cell cultures of Vitis amurensis Rupr. Appl Microbiol Biotechnol 98:5541–5549PubMedCrossRefGoogle Scholar
  7. Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 457:47–52PubMedCrossRefGoogle Scholar
  8. Allwood EG, Davies DR, Gerrish C, Bolwell GP (2002) Regulation of CDPKs, including identification of PAL kinase, in biotically stressed cells of French bean. Plant Mol Biol 49:533–544PubMedCrossRefGoogle Scholar
  9. Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA (2014) Dissecting the transcriptional response to elicitors in Vitis vinifera cells. PLoS One 9:e109777PubMedPubMedCentralCrossRefGoogle Scholar
  10. Almagro L, Belchi-Navarro S, Martinez-Marquez A, Bru R, Pedreno MA (2015) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine. Plant Physiol Biochem 97:361–367PubMedCrossRefGoogle Scholar
  11. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110PubMedCrossRefGoogle Scholar
  12. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188–1194PubMedCrossRefGoogle Scholar
  13. Barceló AR, Pomar F, López-Serrano M, Pedreño MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:577–591CrossRefGoogle Scholar
  14. Bavaresco L, Petegolli D, Cantu E, Fregoni M, Chiusa G, Trevisan M (1997) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis 36:77–83Google Scholar
  15. Becatti E, Genova G, Ranieri A, Tonutti P (2014) Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition. Food Chem 159:257–266PubMedCrossRefGoogle Scholar
  16. Belchi-Navarro S, Almagro L, Sabater-Jara AB, Fernandez-Perez F, Bru R, Pedreno MA (2013) Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 62:107–110PubMedCrossRefGoogle Scholar
  17. Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreno MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89PubMedCrossRefGoogle Scholar
  18. Belchí-Navarro S, Almagro L, Sabater-Jara AB, Fernández-Pérez F, Bru R, Pedreño MA (2013) Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell. J Plant Physiol 170:258–264PubMedCrossRefGoogle Scholar
  19. Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2008) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787PubMedCrossRefGoogle Scholar
  20. Benova B, Adam M, Onderkova K, Kralovsky J, Krajicek M (2008) Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. J Sep Sci 31:2404–2409PubMedCrossRefGoogle Scholar
  21. Berli F, D’Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56:2892–2898PubMedCrossRefGoogle Scholar
  22. Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Daigle K, Bhatnagar D (2013) Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J Agric Food Chem 61:8412–8419PubMedCrossRefGoogle Scholar
  23. Brinker AM, Seigler DS (1993) Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol Mol Plant Pathol 42:169–176CrossRefGoogle Scholar
  24. Cai Z, Kastell A, Speiser C, Smetanska I (2013) Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Appl Biochem Biotechnol 171:330–340PubMedCrossRefGoogle Scholar
  25. Chang X, Heene E, Qiao F, Nick P (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS One 6:e26405PubMedPubMedCentralCrossRefGoogle Scholar
  26. Che JX, Shi JL, Gao ZH, Zhang Y (2016) Transcriptome analysis reveals the genetic basis of the resveratrol biosynthesis pathway in an endophytic fungus (Alternaria sp MG1) isolated from Vitis vinifera. Front Microbiol 7:1257PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen H, Tuck T, Ji X, Zhou X, Kelly G, Cuerrier A, Zhang J (2013) Quality assessment of Japanese knotweed (Fallopia japonica) grown on Prince Edward Island as a source of resveratrol. J Agric Food Chem 61:6383–6392PubMedCrossRefGoogle Scholar
  28. Cheng SH, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188PubMedCrossRefGoogle Scholar
  29. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20PubMedCrossRefGoogle Scholar
  30. Chiron H, Drouet A, Claudot AC, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann HJ (2000a) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745PubMedCrossRefGoogle Scholar
  31. Chiron H, Drouet A, Lieutier F, Payer HD, Ernst D, Sandermann HJ (2000b) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 117:143–155CrossRefGoogle Scholar
  33. Chung IM, Park MR, Rehman S, Yun SJ (2001) Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol Cells 12:353–359PubMedGoogle Scholar
  34. Chung IM, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109CrossRefGoogle Scholar
  35. Corso M, Vannozzi A, Maza E, Vitulo N, Meggio F, Pitacco A, Telatin A, D’Angelo M, Feltrin E, Negri AS, Prinsi B, Valle G, Ramina A, Bouzayen M, Bonghi C, Lucchin M (2015) Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. J Exp Bot 66:5739–5752PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dai R, Ge H, Howard S, Qiu W (2012) Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine. Plant Sci 197:70–76PubMedCrossRefGoogle Scholar
  37. Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol 17:6PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  39. Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YI (2012a) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34:93–101PubMedPubMedCentralCrossRefGoogle Scholar
  40. Das PK, Shin DH, Choi SB, Park YI (2012b) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34:501–507PubMedPubMedCentralCrossRefGoogle Scholar
  41. Degu A, Ayenew B, Cramer GR, Fait A (2016) Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation. Food Chem 212:828–836PubMedCrossRefGoogle Scholar
  42. Deluc LG, Decendit A, Papastamoulis Y, Merillon JM, Cushman JC, Cramer GR (2011) Water deficit increases stilbene metabolism in cabernet sauvignon berries. J Agric Food Chem 59:289–297PubMedCrossRefGoogle Scholar
  43. Deng N, Chang EM, Li MH, Ji J, Yao XM, Banish IV, Liu JF, Ma J, Chen LZ, Jiang ZP, Shi SQ (2016) Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids. Front Plant Sci 7:174PubMedPubMedCentralGoogle Scholar
  44. Deng N, Liu CX, Chang EM, Ji J, Yao XM, Yue JY, Bartish IV, Chen LZ, Jiang ZP, Shi SQ (2017) High temperature and UV-C treatments affect stilbenoid accumulation and related gene expression levels in Gnetum parvifolium. Electron J Biotechnol 25:43–49CrossRefGoogle Scholar
  45. Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520PubMedCrossRefGoogle Scholar
  46. Du QH, Peng C, Zhang H (2013) Polydatin: a review of pharmacology and pharmacokinetics. Pharm Biol 51:1347–1354PubMedCrossRefGoogle Scholar
  47. Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66:3243–3257PubMedPubMedCentralCrossRefGoogle Scholar
  48. Duan D, Fischer S, Merz P, Bogs J, Riemann M, Nick P (2016) An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. J Exp Bot 67:1795–1804PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953PubMedCrossRefGoogle Scholar
  50. Dubrovina AS, Kiselev KV, Veselova MV, Isaeva GA, Fedoreyev SA, Zhuravlev YN (2009) Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. J Plant Physiol 66:1194–1206CrossRefGoogle Scholar
  51. Dubrovina AS, Kiselev KV, Aleynova OA (2016) Influence of overexpression of the true and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes on the growth, stress tolerance, and resveratrol content in Vitis amurensis cell cultures. Acta Physiol Plant 38:78CrossRefGoogle Scholar
  52. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104:2419–2424PubMedPubMedCentralCrossRefGoogle Scholar
  53. Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M (2013) Pterostilbene: biomedical applications. Crit Rev Clin Lab Sci 50:65–78PubMedCrossRefGoogle Scholar
  54. Fang L, Hou Y, Wang L, Xin H, Wang N, Li S (2014) Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Plant Cell Rep 33:1629–1640PubMedCrossRefGoogle Scholar
  55. Faurie B, Cluzet S, Mérillon JM (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J Plant Physiol 166:1863–1877PubMedCrossRefGoogle Scholar
  56. Ferreira S, Silva F, Queiroz JA, Oleastro M, Domingues FC (2014) Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: activity and effect on cellular functions. Int J Food Microbiol 180:62–68PubMedCrossRefGoogle Scholar
  57. Ferri M, Righetti L, Tassoni A (2011) Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. J Plant Physiol 168:189–195PubMedCrossRefGoogle Scholar
  58. Flamini R, De Rosso M, De Marchi F, Vedova AD, Panighel A, Gardiman M, Maoz I, Bavaresco L (2013) An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics 9:1243–1253CrossRefGoogle Scholar
  59. Flamini R, Zanzotto A, de Rosso M, Lucchetta G, Vedova AD, Bavaresco L (2016) Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol Mol Plant Pathol 93:112–118CrossRefGoogle Scholar
  60. Gao R, Austin RS, Amyot L, Hannoufa A (2016) Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genom 17:658CrossRefGoogle Scholar
  61. Ghasemzadeh A, Jaafar HZ, Karimi E (2012) Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. Int J Mol Sci 13:14828–14844PubMedPubMedCentralCrossRefGoogle Scholar
  62. Giovinazzo G, Ingrosso I, Paradiso A, De Gara L, Santino A (2012) Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Food Hum Nutr 67:191–199CrossRefGoogle Scholar
  63. González-Barrio R, Beltrán D, Cantos E, Gil MI, Espín JC, Tomás-Barberán FA (2006) Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior’ white table grapes. J Agric Food Chem 54:4222–42228PubMedCrossRefGoogle Scholar
  64. Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522PubMedPubMedCentralCrossRefGoogle Scholar
  65. Greene LM, Meegan MJ, Zisterer DM (2015) Combretastatins: more than just vascular targeting agents? J Pharmacol Exp Ther 355:212–227PubMedCrossRefGoogle Scholar
  66. Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vögeli-Lange R, Meins FJ, Hain R, Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann HJ (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling. Plant Mol Biol 51:599–607PubMedCrossRefGoogle Scholar
  67. Gutha LR, Casassa LF, Harbertson JF, Naidu RA (2010) Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 10:187PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591PubMedCrossRefGoogle Scholar
  69. Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157:876–890PubMedPubMedCentralCrossRefGoogle Scholar
  70. Harju A, Venalainen M (2012) Stilbenes as constitutive and induced protection compounds in Scots pine (Pious sylvestris L.). Gen Tech Rep PSW-GTR 240:20–26Google Scholar
  71. Harju AM, Venäläinen M, Laakso T, Saranpää P (2009) Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree Physiol 29:19–25PubMedCrossRefGoogle Scholar
  72. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444PubMedCrossRefGoogle Scholar
  73. Hatmi S, Trotel-Aziz P, Villaume S, Couderchet M, Clément C, Aziz A (2014) Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. J Exp Bot 65:75–88PubMedCrossRefGoogle Scholar
  74. Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149PubMedPubMedCentralCrossRefGoogle Scholar
  75. Houillé B, Besseau S, Delanoue G, Oudin A, Papon N, Clastre M, Simkin AJ, Guérin L, Courdavault V, Giglioli-Guivarc’h N, Lanoue A (2015) Composition and tissue-specific distribution of stilbenoids in grape canes are affected by downy mildew pressure in the vineyard. J Agric Food Chem 63:8472–8477PubMedCrossRefGoogle Scholar
  76. Huang X, Mazza G (2011) Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:3890–3899PubMedCrossRefGoogle Scholar
  77. Ioannidis K, Melliou E, Alizoti P, Magiatis P (2016) Identification of black pine (Pinus nigra Arn.) heartwood as a rich source of bioactive stilbenes by qNMR. J Sci Food Agric. doi: 10.1002/jsfa.8090 PubMedGoogle Scholar
  78. Jayatilake GS, Baker BJ (1995) Isolation and identification of a stilbene derivative from the Antarctic sponge Kirkpatrickia variolosa. J Nat Prod 58:1958–1960CrossRefGoogle Scholar
  79. Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, Clément C, Courot E (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 36:331–341PubMedCrossRefGoogle Scholar
  80. Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Il Park Y, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis thaliana. Plant Physiol 154:1515–1531CrossRefGoogle Scholar
  81. Jia X, Shen J, Liu H, Li F, Ding N, Gao C, Pattanaik S, Patra B, Li R, Yuan L (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293PubMedCrossRefGoogle Scholar
  82. Jyske T, Laakso T, Latva-Mäenpää H, Tapanila T, Saranpää P (2014) Yield of stilbene glucosides from the bark of young and old Norway spruce stems. Biomass Bioenerg 71:216–227CrossRefGoogle Scholar
  83. Jyske TM, Suuronen JP, Pranovich AV, Laakso T, Watanabe U, Kuroda K, Abe H (2015) Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques. Planta 242:613–629PubMedCrossRefGoogle Scholar
  84. Jyske T, Kuroda K, Suuronen JP, Pranovich A, Roig-Juan S, Aoki D, Fukushima K (2016) In Planta localization of stilbenes within Picea abies phloem. Plant Physiol 172:913–928PubMedPubMedCentralGoogle Scholar
  85. Kageyama A, Ishizaki K, Kohchi T, Matsuura H, Takahashi K (2015) Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha. Phytochemistry 117:547–553PubMedCrossRefGoogle Scholar
  86. Kalantari H, Das DK (2010) Physiological effects of resveratrol. BioFactors 36:401–406PubMedCrossRefGoogle Scholar
  87. Katsuyama Y, Funa N, Horinouchi S (2007) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2(10):1286–1293PubMedCrossRefGoogle Scholar
  88. Khan MI, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462PubMedPubMedCentralGoogle Scholar
  89. Kikuchi H, Takahashi N, Oshima Y (2004) Novel aromatics bearing 4-O-methylglucose unit isolated from the oriental crude drug Bombyx Batryticatus. Tetrahedron Lett 45:367–370CrossRefGoogle Scholar
  90. Kim JS, Ha TY, Ahn JY, Kim HK, Kim S (2008) Composition and quantitative analysis of stilbenoids in Mulberry (Morus alba L.) leaves and fruits with DAD/UV HPLC. J Korean Soc Food Sci Nutr 37:124–128CrossRefGoogle Scholar
  91. Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692PubMedCrossRefGoogle Scholar
  92. Kiselev KV, Dubrovina AS, Isaeva GA, Zhuravlev YN (2010) The effect of salicylic acid on phenylalanine ammonia-lyase and stilbene synthase gene expression in Vitis amurensis cell culture. Russ J Plant Physiol 57:415–421CrossRefGoogle Scholar
  93. Kiselev KV, Shumakova OA, Manyakhin AY, Mazeika AN (2012) Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis. Plant Growth Regul 68:371–381CrossRefGoogle Scholar
  94. Kiselev KV, Shumakova OA, Manyakhin AY (2013a) Effects of the calmodulin antagonist W7 on resveratrol biosynthesis in Vitis amurensis Rupr. Plant Mol Biol Rep 31:1369–1575CrossRefGoogle Scholar
  95. Kiselev KV, Dubrovina AS, Shumakova OA, Karetin YA, Manyakhin AY (2013b) Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. Plant Cell Rep 32:431–442PubMedCrossRefGoogle Scholar
  96. Kiselev KV, Tyunin AP, Zhuravlev YN (2013c) Involvement of DNA methylation in the regulation of STS10 gene expression in Vitis amurensis. Planta 237:933–941PubMedCrossRefGoogle Scholar
  97. Kiselev KV, Shumakova OA, Manyakhin AY (2013d) Effect of plant stilbene precursors on the biosynthesis of resveratrol in Vitis amurensis Rupr. cell cultures. Appl Biochem Microbiol 49:53–58CrossRefGoogle Scholar
  98. Kiselev KV, Tyunin AP, Karetin YA (2015) Salicylic acid induces alterations in the methylation pattern of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. cell cultures. Plant Cell Rep 34:311–320PubMedCrossRefGoogle Scholar
  99. Kiselev KV, Grigorchuk VP, Ogneva ZV, Suprun AR, Dubrovina AS (2016) Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry 131:57–67PubMedCrossRefGoogle Scholar
  100. Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS (2017) Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 245:151–159PubMedCrossRefGoogle Scholar
  101. Kuhn BM, Errafi S, Bucher R, Dobrev P, Geisler M, Bigler L, Zažímalová E, Ringli C (2016) 7-Rhamnosylated flavonols modulate homeostasis of the plant hormone auxin and affect plant development. J Biol Chem 291:5385–5395PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C (2012) Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 54:410–417PubMedCrossRefGoogle Scholar
  103. Laavola M, Nieminen R, Leppänen T, Eckerman C, Holmbom B, Moilanen E (2015) Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. J Agric Food Chem 63:3445–3453PubMedCrossRefGoogle Scholar
  104. Lai TNH, Herent MF, Quetin-Leclercq J, Nguyen TBT, Rogez H, Larondelle Y, André CM (2013) Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chem 138:1421–1430PubMedCrossRefGoogle Scholar
  105. Lambert C, Richard T, Renouf E, Bisson J, Waffo-Teguo P, Bordenave L, Ollat N, Merillon JM, Cluzet S (2013) Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. Agric Food Chem 61:11392–11399CrossRefGoogle Scholar
  106. Larronde F, Krisa S, Decendit A, Cheze C, Merillon JM (1998) Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep 17:946–950CrossRefGoogle Scholar
  107. Larronde F, Gaudillère JP, Krisa S, Decendit A, Deffieux G, Mérillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am J Enol Viti 54:60–63Google Scholar
  108. Latva-Mäenpää H, Laakso T, Sarjala T, Wähälä K, Saranpää P (2013) Variation of stilbene glucosides in bark extracts obtained from roots and stumps of Norway spruce (Picea abies [L.] Karst.). Trees-Struct Funct 27:131–139CrossRefGoogle Scholar
  109. Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269PubMedCrossRefGoogle Scholar
  110. Lepak A, Gutmann A, Kulmer ST, Nidetzky B (2015) Creating a water-soluble resveratrol-based antioxidant by site-selective enzymatic glucosylation. ChemBioChem 16:1870–1874CrossRefGoogle Scholar
  111. Li H, Liang J, Chen H, Ding G, Ma B, He N (2016) Evolutionary and functional analysis of mulberry type III polyketide synthases. BMC Genom 17:540CrossRefGoogle Scholar
  112. Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708PubMedCrossRefGoogle Scholar
  113. Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016PubMedCrossRefGoogle Scholar
  114. Lyons MM, Yu CW, Toma RB, Cho SY, Reiboldt W, Lee J, Van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870PubMedCrossRefGoogle Scholar
  115. Maddox CE, Laur LM, Tian L (2010) Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol 60:53–58PubMedCrossRefGoogle Scholar
  116. Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C (2016) The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot 67:3509–3522PubMedPubMedCentralCrossRefGoogle Scholar
  117. Manela N, Oliva M, Ovadia R, Sikron-Persi N, Ayenew B, Fait A, Galili G, Perl A, Weiss D, Oren-Shamir M (2015) Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front Plant Sci 6:538PubMedPubMedCentralCrossRefGoogle Scholar
  118. Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20:816–831PubMedCrossRefGoogle Scholar
  119. Morales M, Alcántara J, Barceló AR (1997) Oxidation of trans-resveratrol by a hypodermal peroxidase isoenzyme from gamay rouge grape (Vitis vinifera) berries. Am J Enol Vitic 48:33–38Google Scholar
  120. Mori T, Awakawa T, Shimomura K, Saito Y, Yang D, Morita H, Abe I (2016) Structural insight into the enzymatic formation of bacterial stilbene. Cell Chem Biol 23:1468–1479PubMedCrossRefGoogle Scholar
  121. Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009) Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol 50:2210–2222PubMedCrossRefGoogle Scholar
  122. Muilu-Makela R, Vuosku J, Hamberg L, Latva-Maenpaa H, Haggman H, Sarjala T (2015) Osmotic stress affects polyamine homeostasis and phenolic content in proembryogenic liquid cell cultures of Scots pine. Plant Cell Tissue Organ Cult 122:709–726CrossRefGoogle Scholar
  123. Mulat DG, Latva-Maenpaa H, Koskela H, Saranpaa P, Wahala K (2014) Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off-line HPLC/DAD-NMR. Phytochem Anal 25:529–536PubMedCrossRefGoogle Scholar
  124. Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379PubMedCrossRefGoogle Scholar
  125. Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F (2014) The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol 164:365–383PubMedCrossRefGoogle Scholar
  126. Pan QH, Wang L, Li JM (2009) Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Sci 176:360–366CrossRefGoogle Scholar
  127. Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11:1285–1298PubMedCrossRefGoogle Scholar
  128. Parage C, Tavares R, Réty S, Baltenweck-Guyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S, Hugueney P (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160:1407–1419PubMedPubMedCentralCrossRefGoogle Scholar
  129. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  130. Pearce RB (1996) Effects of exposure to high ozone concentrations on stilbenes in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark and on its lignification response to infection with Heterobasidion annosum (Fr.) Bref Physiol Mol. Plant Pathol 48:117–129Google Scholar
  131. Peng XL, Xu J, Sun XF, Ying CJ, Hao LP (2015) Analysis of trans-resveratrol and trans-piceid in vegetable foods using high-performance liquid chromatography. Int J Food Sci Nutr 66:729–735PubMedCrossRefGoogle Scholar
  132. Piao SJ, Chen LX, Kang N, Qiu F (2011) Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography. Phytochem Anal 22:230–235PubMedCrossRefGoogle Scholar
  133. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82PubMedCrossRefGoogle Scholar
  134. Plumed-Ferrer C, Väkeväinen K, Komulainen H, Rautiainen M, Smeds A, Raitanen JE, Eklund P, Willför S, Alakomi HL, Saarela M, von Wright A (2013) The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int J Food Microbiol 164:99–107PubMedCrossRefGoogle Scholar
  135. Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564PubMedCrossRefGoogle Scholar
  136. Powell RG, Tepaske MR, Plattner RD, White JF, Clement SL (1994) Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the Poaceae. Phytochemistry 35:335–338CrossRefGoogle Scholar
  137. Preisig-Müller R, Schwekendiek A, Brehm I, Reif HJ, Kindl H (1999) Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes. Plant Mol Biol 39:221–229PubMedCrossRefGoogle Scholar
  138. Ragab AS, Van Fleet J, Jankowski B, Park JH, Bobzin SC (2006) Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.). J Agric Food Chem 54:7175–7179PubMedCrossRefGoogle Scholar
  139. Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032PubMedPubMedCentralCrossRefGoogle Scholar
  140. Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 374:157–163PubMedPubMedCentralCrossRefGoogle Scholar
  141. Rimando AM, Cody R (2005) Determination of stilbenes in blueberries. LC GC North Am 23:1192–1200Google Scholar
  142. Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR (2012) In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol J 10:269–283PubMedCrossRefGoogle Scholar
  143. Riviere C, Pawlus AD, Merillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333PubMedCrossRefGoogle Scholar
  144. Rokaya MB, Marsik P, Muenzbergova Z (2012) Active constituents in Rheum acuminatum and Rheum australe (Polygonaceae) roots: a variation between cultivated and naturally growing plants. Biochem Syst Ecol 41:83–90CrossRefGoogle Scholar
  145. Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone: II. Induction of stilbene biosynthesis in scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286PubMedPubMedCentralCrossRefGoogle Scholar
  146. Rudolf JR, Resurreccion AV (2005) Elicitation of resveratrol in peanut kernels by application of abiotic stresses. J Agric Food Chem 53:10186–10192PubMedCrossRefGoogle Scholar
  147. Sae-Lee N, Kerdchoechuen O, Laohakunjit N (2014) Enhancement of phenolics, resveratrol and antioxidant activity by nitrogen enrichment in cell suspension culture of Vitis vinifera. Molecules 19:7901–7912PubMedCrossRefGoogle Scholar
  148. Sarig P, Zahavi T, Zutkhi Y, Yannai S, Lisker N, Ben-Arie R (1996) Ozone for control of post-harvest decay of table grapes caused by Rhizopus stolonifer. Physiol Mol Plant Pathol 48:403–415CrossRefGoogle Scholar
  149. Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426PubMedCrossRefGoogle Scholar
  151. Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sergent T, Kohnen S, Jourez B, Beauve C, Schneider YJ, Vincke C (2014) Characterization of black locust (Robinia pseudoacacia L.) heartwood extractives: identification of resveratrol and piceatannol. Wood Sci Technol 48:1005–1017CrossRefGoogle Scholar
  153. Shao L, Zhao SJ, Cui TB, Liu ZY, Zhao W (2012) 2,3,5,4′- tetrahydroxystilbene-2-O-β-D-glycoside biosynthesis by suspension cells cultures of Polygonum multiflorum Thunb and production enhancement by methyl jasmonate and salicylic acid. Molecules 17:2240–2247PubMedCrossRefGoogle Scholar
  154. Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26(7):916–935PubMedCrossRefGoogle Scholar
  155. Shi J, Zeng Q, Liu Y, Pan Z (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 95:369–379PubMedCrossRefGoogle Scholar
  156. Shi JL, He MY, Cao JL, Wang H, Ding JH, Jiao YT, Li RM, He J, Wang D, Wang YJ (2014) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Phisyol Biochem 74:24–32CrossRefGoogle Scholar
  157. Shin DH, Choi MG, Lee HK, Cho M, Choi SB, Choi G, Park YI (2013) Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochem Biophys Res Commun 430:634–639PubMedCrossRefGoogle Scholar
  158. Shumakova OA, Manyakhin AY, Kiselev KV (2011) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Appl Biochem Biotechnol 165:1427–1436PubMedCrossRefGoogle Scholar
  159. Sobolev VS (2008) Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. J Agric Food Chem 56:1949–1954PubMedCrossRefGoogle Scholar
  160. Sobolev VS (2013) Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. J Agric Food Chem 61:1850–1858PubMedCrossRefGoogle Scholar
  161. Sun Y, Qiu Y, Duan M, Wang J, Zhang X, Wang H, Song J, Li X (2017) Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Mol Genet Genom 292:215–229CrossRefGoogle Scholar
  162. Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S, Matsumoto S, Saito K, Shiratake K (2015) Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. Plant Physiol 168:47–59PubMedPubMedCentralCrossRefGoogle Scholar
  163. Tang K, Zhan JC, Yang HR, Huang WD (2010) Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol 167:95–102PubMedCrossRefGoogle Scholar
  164. Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905PubMedCrossRefGoogle Scholar
  165. Tassoni A, Durante L, Ferri M (2012) Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J Plant Physiol 169:775–781PubMedCrossRefGoogle Scholar
  166. Taurino M, Ingrosso I, Damico L, De Domenico S, Nicoletti I, Corradini D, Santino A, Giovinazzo G (2015) Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures. Springerplus 4:49PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tavares S, Vesentini D, Fernandes JC, Ferreira RB, Laureano O, Ricardo-Da-Silva JM, Amâncio S (2013) Vitis vinifera secondary metabolism as affected by sulfate depletion: diagnosis through phenylpropanoid pathway genes and metabolites. Plant Physiol Biochem 66:118–126PubMedCrossRefGoogle Scholar
  168. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323PubMedCrossRefGoogle Scholar
  169. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H (2013) Berry phenolics of grapevine under challenging environments. Int J Mol Sci 14:18711–18739PubMedPubMedCentralCrossRefGoogle Scholar
  170. Timperio AM, D’Alessandro A, Fagioni M, Magro P, Zolla L (2012) Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiol Biochem 50:65–71PubMedCrossRefGoogle Scholar
  171. Tyunin AP, Kiselev KV (2016) Alternations in VaSTS gene cytosine methylation and t-resveratrol production in response to UV-C irradiation in Vitis amurensis Rupr. cells. Plant Cell Tissue Organ Cult 124:33–45CrossRefGoogle Scholar
  172. Tyunin AP, Kiselev KV (2017) Influence of increased expression of VaMyb1 transcription factor on biosynthesis of resveratrol in the cells of Amur grape (Vitis amurensis). Russ J Plant Physiol 64:41–47CrossRefGoogle Scholar
  173. Tyunin AP, Kiselev KV, Karetin YA (2013) Differences in the methylation patterns of the VaSTS1 and VaSTS10 genes of Vitis amurensis Rupr. Biotechnol Lett 35:1525–1532PubMedCrossRefGoogle Scholar
  174. Tyunin AP, Nityagovsky NN, Grigorchuk VP, Kiselev KV (2017) Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis treated with cinnamic and caffeic acids. Biotechnol Appl Biochem. doi: 10.1002/bab.1564
  175. Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Alain P (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440PubMedCrossRefGoogle Scholar
  176. Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130PubMedPubMedCentralCrossRefGoogle Scholar
  177. Vastano BC, Chen Y, Zhu N, Ho CT, Zhou Z, Rosen RT (2000) Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. J Agric Food Chem 48:253–256PubMedCrossRefGoogle Scholar
  178. Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am J Enol Vitic 58:530–533Google Scholar
  179. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  180. Vrchotová N, Šerá B, Tříska J (2007) The stilbene and catechin content of the spring sprouts of Reynoutria species. Acta Chromatogr 19:21–28Google Scholar
  181. Wang XF, Yao CS (2016) Naturally active oligostilbenes. J Asian Nat Prod Res 18:376–407PubMedCrossRefGoogle Scholar
  182. Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Phisyol Bochem 48:142–152CrossRefGoogle Scholar
  183. Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109PubMedCrossRefGoogle Scholar
  184. Wang CP, Zhang LZ, Li GC, Shi YW, Li JL, Zhang XC, Wang ZW, Ding F, Liang XM (2014a) Mulberroside A protects against ischemic impairment in primary culture of rat cortical neurons after oxygen-glucose deprivation followed by reperfusion. J Neurosci Res 92:944–954PubMedCrossRefGoogle Scholar
  185. Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C (2014b) Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Mar Drugs 12:2840–2850PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wang JF, Ma L, Xi HF, Wang LJ, Li SH (2015) Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera × V. amurensis). Food Chem 168:430–438PubMedCrossRefGoogle Scholar
  187. Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 125:387–398CrossRefGoogle Scholar
  188. Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJ, MacKay J, Birol I, Bohlmann J (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83:189–212PubMedCrossRefGoogle Scholar
  189. Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:22PubMedPubMedCentralCrossRefGoogle Scholar
  190. Weiskirchen S, Weiskirchen R (2016) Resveratrol: how much wine do you have to drink to stay healthy? Adv Nutr 7:706–718PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wong DC, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, Tornielli GB, Castellarin SD, Matus JT (2016) A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res 23:451–466PubMedCentralCrossRefGoogle Scholar
  192. Wu Q, Su N, Zhang X, Liu Y, Cui J, Liang Y (2016) Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 6:29164PubMedPubMedCentralCrossRefGoogle Scholar
  193. Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Ma LN, Fang YL (2013) Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem 141:3056–3065PubMedCrossRefGoogle Scholar
  194. Xi H-F, Ma L, Wang L-N, Li S-H, Wang L-J (2015) Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N Z J Crop Hortic Sci 43:163–172CrossRefGoogle Scholar
  195. Xu L, Liu C, Xiang W, Chen H, Qin XL, Huang XZ (2014) Advances in the study of oxyresveratrol. Int J Pharmacol 10:44–54CrossRefGoogle Scholar
  196. Xu A, Zhan JC, Huang WD (2015a) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell, Tissue Organ Cult 122:197–211CrossRefGoogle Scholar
  197. Xu W, Dubos C, Lepiniec L (2015b) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185PubMedCrossRefGoogle Scholar
  198. Yang T, Fang L, Rimando AM, Sobolev V, Mockaitis K, Medina-Bolivar F (2016) A stilbenoid-specific prenyltransferase utilizes dimethylallyl pyrophosphate from the plastidic terpenoid pathway. Plant Physiol 171:2483–2498PubMedPubMedCentralGoogle Scholar
  199. Yang L, Zhao X, Ran L, Li C, Fan D, Luo K (2017) PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep 7:41209PubMedPubMedCentralCrossRefGoogle Scholar
  200. Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762PubMedCrossRefGoogle Scholar
  201. Yu CKY, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C (2005) A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiol 138:393–401PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yu CKY, Shih CH, Chu IK, Lo C (2008) Accumulation of trans-piceid in sorghum seedlings infected with Colletotrichum sublineolum. Phytochemistry 69:700–706PubMedCrossRefGoogle Scholar
  203. Zhang ZZ, Li XX, Chu YN, Zhang MX, Wen YQ, Duan CQ, Pan QH (2012) Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol Biochem 57:74–83PubMedCrossRefGoogle Scholar
  204. Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C (2015a) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635PubMedPubMedCentralCrossRefGoogle Scholar
  205. Zhang M, Dong Y, Nie L, Lu M, Fu C, Yu L (2015b) High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Front Plant Sci 6:604PubMedPubMedCentralGoogle Scholar
  206. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefGoogle Scholar
  207. Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L (2013) Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci World J 2013:380692Google Scholar
  208. Zhou Q, Du Y, Cheng S, Li R, Zhang J, Wang Y (2015) Resveratrol derivatives in four tissues of six wild Chinese grapevine species. N Z J Crop Hortic Sci 43:204–213CrossRefGoogle Scholar
  209. Zhu F, Han J, Liu S, Chen X, Varshney RK, Liang X (2014) Cloning, expression pattern analysis and subcellular localization of resveratrol synthase gene in peanut (Arachis hypogaea L.). Am J Plant Sci 5:3619–3631CrossRefGoogle Scholar
  210. Zhu JH, Cao TJ, Dai HF, Li HL, Guo D, Mei WL, Peng SQ (2016) De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon’s blood. Sci Rep 6:38315PubMedPubMedCentralCrossRefGoogle Scholar
  211. Zinser C, Ernst D, Sandermann H (1998) Induction of stilbene synthase and cinnamyl alcohol dehydrogenase mRNAs in Scots pine (Pinus sylvestris L.) seedlings. Planta 204:169–176CrossRefGoogle Scholar
  212. Zorzete P, Reis TA, Felício JD, Baquião AC, Makimoto P, Corrêa B (2011) Fungi, mycotoxins and phytoalexin in peanut varieties, during plant growth in the field. Food Chem 129:957–964PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial BiodiversityFar Eastern Branch of the Russian Academy of SciencesVladivostokRussia
  2. 2.Department of Biotechnology and Microbiology, The School of Natural SciencesFar Eastern Federal UniversityVladivostokRussia

Personalised recommendations