, Volume 246, Issue 4, pp 701–710 | Cite as

Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A

  • Maria T. Creighton
  • Maite Sanmartín
  • Amr R. A. Kataya
  • Irina O. Averkina
  • Behzad Heidari
  • Dugassa Nemie-Feyissa
  • Jose J. Sánchez-Serrano
  • Cathrine LilloEmail author
Original Article


Main conclusion

PP2A catalytic subunit C2 is of special importance for light/dark regulation of nitrate reductase activity. The level of unmethylated PP2A catalytic subunits decreases in darkness.

Protein phosphatase 2A (PP2A) dephosphorylates and activates nitrate reductase (NR) in photosynthetically active tissue when plants are transferred from darkness to light. In the present work, investigation of Arabidopsis thaliana PP2A mutant lines revealed that one of the five PP2A catalytic subunit genes, e.g., C2, was of special importance for NR activation. Impairment of NR activation was, especially pronounced in the c2c4 double mutant. Though weaker, NR activation was also impaired in the c2 single mutant, and c1c2 and c2c5 double mutants. On the other hand, NR activation in the c4c5 double mutant was as efficient as in WT. The c4 single mutant had low PP2A activity, whereas the c2 single mutant possessed WT levels of extractable PP2A activity. PP2A activity was low in both c2c4 and c4c5. Differences in extracted PP2A activity among mutants did not strictly correlate with differences in NR activation, but underpinned that C2 has a special function in NR activation in vivo. The terminal leucine in PP2A catalytic subunits is generally methylated to a high degree, but regulation and impact of methylation/demethylation is barely studied. In WT and PP2A mutants, the level of unmethylated PP2A catalytic subunits decreased during 45 min of darkness, but did not change much when light was switched on. In leucine carboxyl methyl transferase1 (LCMT1) knockout plants, which possess mainly unmethylated PP2A, NR was still activated, although not fully as efficient as in WT.


LCMT1 Methylation Nitrate reductase (NR) Phosphorylation PP2A methyl esterase (PME1) Protein phosphate 2A (PP2A) 



Leucine carboxyl methyl transferase 1


Nitrate reductase


PP2A methyl esterase


Protein phosphatase 2A



This work was supported by a NILS-EEA Grant (019-ABEL-CM-2013) to JJSS and CL, and the Norwegian Research council (NRC) Grant 213853/F20 to CL. BSc students Iren B Helland, Ellen Marie Klinkenberg, Yvonne Sletthaug, and Linn-Kristine Svendsen contributed with NR testing.

Supplementary material

425_2017_2726_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1654 kb)


  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657. doi: 10.1126/science.1086391 CrossRefPubMedGoogle Scholar
  2. Ballesteros I, Dominguez T, Sauer M, Paredes P, Duprat A, Rojo E, Sanmartin M, Sanchez-Serrano JJ (2013) Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in Arabidopsis. Plant J 5:862–872. doi: 10.1111/tpj.12078 CrossRefGoogle Scholar
  3. Chi JC, Roeper J, Schwarz G, Fischer-Schrader K (2015) Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity. J Biol Inorg Chem 20(2):277–286. doi: 10.1007/s00775-014-1232-4 CrossRefPubMedGoogle Scholar
  4. Cohen P, Alemany S, Hemmings BA, Resink TJ, Stralfors P, Tung HY (1988) Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol 159:390–408CrossRefPubMedGoogle Scholar
  5. Cohen P, Klumpp S, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250(2):596–600CrossRefPubMedGoogle Scholar
  6. Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12(4):169–176. doi: 10.1016/j.tplants.2007.03.003 CrossRefPubMedGoogle Scholar
  7. Gentry MS, Li Y, Wei H, Syed FF, Patel SH, Hallberg RL, Pallas DC (2005) A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2A heterotrimers. Eukaryot Cell 4(6):1029–1040. doi: 10.1128/EC.4.6.1029-1040.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Heidari B, Matre P, Nemie-Feyissa D, Meyer C, Rognli OA, Moller SG, Lillo C (2011) Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation. Plant Physiol 156(1):165–172. doi: 10.1104/pp.111.172734 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hu R, Zhu Y, Wei J, Chen J, Shi H, Shen G, Zhang H (2017) Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. Plant, Cell Environ 40(1):150–164. doi: 10.1111/pce.12837 CrossRefGoogle Scholar
  10. Huber SC, MacKintosh C, Kaiser WM (2002) Metabolic enzymes as targets for 14-3-3 proteins. Plant Mol Biol 50(6):1053–1063CrossRefPubMedGoogle Scholar
  11. Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33(3):113–121. doi: 10.1016/j.tibs.2007.12.004 CrossRefPubMedGoogle Scholar
  12. Kaiser WM, Brendle-Behnisch E (1991) Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis: I. modulation in vivo by CO(2) availability. Plant Physiol 96(2):363–367CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B (2012) GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 40(Database issue):D1211–1215. doi: 10.1093/nar/gkr1047 CrossRefPubMedGoogle Scholar
  14. Lillo C (2008) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415(1):11–19. doi: 10.1042/BJ20081115 CrossRefPubMedGoogle Scholar
  15. Lillo C, Kataya AR, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant, Cell Environ 37(12):2631–2648. doi: 10.1111/pce.12364 CrossRefGoogle Scholar
  16. Longin S, Zwaenepoel K, Louis JV, Dilworth S, Goris J, Janssens V (2007) Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic subunit. J Biol Chem 282(37):26971–26980. doi: 10.1074/jbc.M704059200 CrossRefPubMedGoogle Scholar
  17. Longman MR, Ranieri A, Avkiran M, Snabaitis AK (2014) Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory class G-protein coupled receptors in cardiomyocytes. PLoS One 9(1):e86234. doi: 10.1371/journal.pone.0086234 CrossRefPubMedPubMedCentralGoogle Scholar
  18. MacKintosh C (1992) Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim Biophys Acta 1137(1):121–126CrossRefPubMedGoogle Scholar
  19. Mackintosh C, Douglas P, Lillo C (1995) Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol 107(2):451–457CrossRefPubMedPubMedCentralGoogle Scholar
  20. McAvoy T, Nairn AC (2010) Serine/threonine protein phosphatase assays. Curr Protoc Mol Biol Chapter 18(Unit18):18. doi: 10.1002/0471142727.mb1818s92 Google Scholar
  21. Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417(2):401–409. doi: 10.1042/BJ20081986 CrossRefPubMedGoogle Scholar
  22. Naranjo B, Diaz-Espejo A, Lindahl M, Cejudo FJ (2016) Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J Exp Bot 67(6):1951–1964. doi: 10.1093/jxb/erw017 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nemie-Feyissa D, Krolicka A, Forland N, Hansen M, Heidari B, Lillo C (2013) Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants. J Plant Physiol 170(7):662–667. doi: 10.1016/j.jplph.2012.12.010 CrossRefPubMedGoogle Scholar
  24. Pernas M, Garcia-Casado G, Rojo E, Solano R, Sanchez-Serrano JJ (2007) A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling. Plant J 51(5):763–778. doi: 10.1111/j.1365-313X.2007.03179.x CrossRefPubMedGoogle Scholar
  25. Portis AR Jr (2003) Rubisco activase—rubisco’s catalytic chaperone. Photosynth Res 75(1):11–27. doi: 10.1023/A:1022458108678 CrossRefPubMedGoogle Scholar
  26. Provan F, Lillo C (1999) Photosynthetic post-translational activation of nitrate reductase. J Plant Physiol 154:605–609CrossRefGoogle Scholar
  27. Segonzac C, Macho AP, Sanmartin M, Ntoukakis V, Sanchez-Serrano JJ, Zipfel C (2014) Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. EMBO J 33(18):2069–2079. doi: 10.15252/embj.201488698 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Snabaitis AK, D’Mello R, Dashnyam S, Avkiran M (2006) A novel role for protein phosphatase 2A in receptor-mediated regulation of the cardiac sarcolemmal Na+/H+ exchanger NHE1. J Biol Chem 281(29):20252–20262. doi: 10.1074/jbc.M600268200 CrossRefPubMedGoogle Scholar
  29. Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS et al (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13(2):124–131. doi: 10.1038/ncb2151 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR 3rd, Schroeder JI (2015) Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein kinases2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol 169(1):760–779. doi: 10.1104/pp.15.00575 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19(21):5672–5681. doi: 10.1093/emboj/19.21.5672 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wu G, Wang X, Li X, Kamiya Y, Otegui MS, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4(172):ra29. doi: 10.1126/scisignal.2001258 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yu RM, Wong MM, Jack RW, Kong RY (2005) Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.). Planta 222(5):757–768. doi: 10.1007/s00425-005-0018-x CrossRefPubMedGoogle Scholar
  34. Yue K, Sandal P, Williams EL, Murphy E, Stes E, Nikonorova N, Ramakrishna P, Czyzewicz N, Montero-Morales L, Kumpf R et al (2016) PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root. Proc Natl Acad Sci USA 113(5):1447–1452. doi: 10.1073/pnas.1525122113 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Maria T. Creighton
    • 1
  • Maite Sanmartín
    • 2
  • Amr R. A. Kataya
    • 1
  • Irina O. Averkina
    • 1
  • Behzad Heidari
    • 1
  • Dugassa Nemie-Feyissa
    • 1
  • Jose J. Sánchez-Serrano
    • 2
  • Cathrine Lillo
    • 1
    Email author
  1. 1.Faculty of Science and Technology, Centre for Organelle ResearchUniversity of StavangerStavangerNorway
  2. 2.Departamento de Genética Molecular de PlantasCentro Nacional de Biotecnología, CSICMadridSpain

Personalised recommendations