Skip to main content
Log in

Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A coordinated regulation of different branches of the flavonoid pathway was highlighted that may contribute to elucidate the role of this important class of compounds during the early stages of apple fruit development.

Apple (Malus × domestica Borkh.) is an economically important fruit appreciated for its organoleptic characteristics and its benefits for human health. The first stages after fruit set represent a very important and still poorly characterized developmental process. To enable the profiling of genes involved in apple early fruit development, we combined the suppression subtractive hybridization (SSH) protocol to next-generation sequencing. We identified and characterized genes induced and repressed during fruit development in the apple cultivar ‘Golden Delicious’. Our results showed an opposite regulation of genes coding for enzymes belonging to flavonoid and monolignol pathways, with a strong induction of the former and a simultaneous repression of the latter. Two isoforms of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, key enzymes located at the branching point between flavonoid and monolignol pathways, showed opposite expression patterns during the period in analysis, suggesting a possible regulation mechanism. A targeted metabolomic analysis supported the SSH results and revealed an accumulation of the monomers catechin and epicatechin as well as several forms of procyanidin oligomers in apple fruitlets starting early after anthesis, together with a decreased production of other classes of flavonoids such as some flavonols and the dihydrochalcone phlorizin. Moreover, gene expression and metabolites accumulation of ‘Golden Delicious’ were compared to a wild apple genotype of Manchurian crabapple (Malus mandshurica (Maxim.) Kom.). Significant differences in both gene expression and metabolites accumulation were found between the two genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Bain JM, Robertson RN (1951) The physiology of growth in apple fruits. I. Cell size, cell number, and fruit development. Aust J Sci Res B 4:75–107

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botton A, Rasori A, Ziliotto F, Moing A, Maucourt M, Bernillon S, Deborde C, Petterle A, Varotto S, Bonghi C (2016) The peach HECATE3-like gene FLESHY plays a double role during fruit development. Plant Mol Biol 91:97–114

    Article  CAS  PubMed  Google Scholar 

  • Buer CS, Kordbacheh F, Truong TT, Hocart CH, Djordjevic MA (2013) Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238:171–189

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JL, Caruso FL, Tata A, Vorsa N, Neto CC (2014) Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon). J Sci Food Agric 94:2738–2745

    Article  CAS  PubMed  Google Scholar 

  • Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doughty J, Aljabri M, Scott RJ (2014) Flavonoids and the regulation of seed size in Arabidopsis. Biochem Soc Trans 42:364–369

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Buttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Li M, Ma F, Cheng L (2013) Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiol Biochem 69:54–61

    Article  CAS  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottardini E, Cristofori A, Pellegrini E, La Porta N, Nali C, Baldi P, Sablok G (2016) Suppression substractive hybridization and NGS reveal differential transcriptome expression profiles in wayfaring tree (Viburnum lantana L.) treated with ozone. Front Plant Sci 7:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. Plant Physiol 157:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WL, Chen RG, Gong ZH, Yin YX, Li DW (2013) Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (L.) leaves under chilling stress. PLoS One 8:e66667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hectors K, Van Oevelen S, Geuns J, Guisez Y, Jansen MA, Prinsen E (2014) Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. Physiol Plant 152:219–230

    Article  CAS  PubMed  Google Scholar 

  • Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC (2012) Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J Exp Bot 63:5437–5450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang ZL, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Hu WJ, Kawaoka A, Tsai CJ, Lung J, Osakabe K, Ebinuma H, Chiang VL (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA 95:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JE (2003) The biology of apples and pears. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols 10:845–858

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    Article  CAS  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yuan R (2008) NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J Plant Growth Regul 27:283–295

    Article  CAS  Google Scholar 

  • Li S, Zachgo S (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76:901–913

    Article  CAS  PubMed  Google Scholar 

  • Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Mollers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J (2002) Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Eur J Biochem 269:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagne D, Rowan DD, Troggio M, Iglesias I, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    Article  PubMed  Google Scholar 

  • Lukyanov SA, Gurskaya NG, Lukyanov KA, Tarabykin VS, Sverdlov ED (1994) Highly efficient subtractive hybridization of cDNA. Bioorg Khim 20:701–704

    CAS  Google Scholar 

  • Montero L, Herrero M, Ibanez E, Cifuentes A (2013) Profiling of phenolic compounds from different apple varieties using comprehensive two-dimensional liquid chromatography. J Chromatogr A 1313:275–283

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Ogah O, Watkins CS, Ubj BE, Oraguzie NC (2014) Phenolic compounds in rosaceae fruit and nut crops. J Agric Food Chem 62:9369–9386

    Article  CAS  PubMed  Google Scholar 

  • Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M (2014) Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 65:2203–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt C (1988) Apple flower and fruit: morphology and anatomy. Horticultural reviews. Wiley, New York, pp 273–308

    Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renard CMGC, Dupont N, Guillermin P (2007) Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino Acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke M-V, Stich K, Fischer TC (2009) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2001) Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul 34:71–89

    Article  CAS  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira PM, Coelho AS, Steindorff AS, de Siqueira SJ, Silva Rdo N, Ulhoa CJ (2013) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genom 14:177

    Article  CAS  Google Scholar 

  • Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52:6532–6538

    Article  CAS  PubMed  Google Scholar 

  • Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, Viola R, Mattivi F (2012) A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J Agric Food Chem 60:8831–8840

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Han K, Heller W, Albert A, Dobrev PI, Zazimalova E, Schaffner AR (2013) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201:466–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye Z-H (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Pierluigi Magnago for the maintenance of the orchard. This work was supported by the Autonomous Province of Trento “TranscrApple” grandi progetti 2012 to ASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Baldi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, P., Moser, M., Brilli, M. et al. Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development. Planta 245, 1021–1035 (2017). https://doi.org/10.1007/s00425-017-2660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2660-5

Keywords

Navigation