Advertisement

Planta

, Volume 245, Issue 5, pp 1037–1048 | Cite as

Transgenic papaya: a useful platform for oral vaccines

  • Gladis Fragoso
  • Marisela Hernández
  • Jacquelynne Cervantes-Torres
  • Rubén Ramírez-Aquino
  • Héctor Chapula
  • Nelly Villalobos
  • René Segura-Velázquez
  • Alfredo Figueroa
  • Iván Flores
  • Herminio Jiménez
  • Laura Adalid
  • Gabriela Rosas
  • Luis Galvez
  • Elias Pezzat
  • Elizabeth Monreal-Escalante
  • Sergio Rosales-Mendoza
  • Luis G. Vazquez
  • Edda Sciutto
Original Article

Abstract

Main conclusion

Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps.

The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant-based vaccines.

Keywords

Cysticercosis Embryogenic callus Oral vaccine Taenia solium Taenia crassiceps 

Abbreviations

DTH

Delayed-type hypersensitivity

PBMC

Peripheral blood mononuclear cell

Notes

Acknowledgements

This work was supported by CONACyT (201448, 152793), DGAPA (IG-200414), Programa de Investigación para el Desarrollo y la Optimización de Vacunas, Inmunomoduladores y Métodos Diagnósticos del Instituto de Investigaciones Biomédicas, UNAM, and Programa de Redes Temáticas de Colaboración académica, PRODEP. The authors acknowledge Georgina Diaz, Carlos Escamilla Weinman, Francisco Ramos Collazo, Daniel Garzón, Heriberto Prado-Garcia, Jorge Rebollar and Omar Rangel for technical support, and Juan Francisco Rodriguez for English edition of this manuscript. All authors have read and approved the final manuscript draft.

Compliance with ethical standards

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Supplementary material

425_2017_2658_MOESM1_ESM.jpg (29 kb)
Supplementary Fig. S1 Relative expression of KETc1.6His, KETc12.6His and KETc7 transcript levels by real-time PCR. RNA from transgenic embryogenic papaya clones named pKETc126, pKETc19, and pKETc723 was isolated and subjected to reverse transcription to perform qPCR analysis. Amplification of heterologous cDNAs was measured and normalized using four different housekeeping genes (EF1, EF2, TBP1, TBP2) (JPEG 28 kb)

References

  1. Arama C, Troye Blomberg M (2014) The path of malaria vaccine development: challenges and perspectives. J Intern Med 275:456–466CrossRefPubMedGoogle Scholar
  2. Baldauf KJ, Royal JM, Hamorsky KT, Matoba N (2015) Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 7:974–996CrossRefGoogle Scholar
  3. Berguer PM, Alzogaray VA, Rossi AH, Mundiñano J, Piazzon I, Goldbaum FA (2012) A polymeric protein induces specific cytotoxicity in a TLR4 dependent manner in the absence of adjuvants. PLoS One 7:e45705CrossRefPubMedPubMedCentralGoogle Scholar
  4. Betancourt MA, de Aluja AS, Sciutto E, Hernández M, Bobes RJ, Rosas G, Hernández B, Fragoso G, Hallal-Calleros C, Aguilar L, Flores-Peréz I (2012) Effective protection induced by three different versions of the porcine S3Pvac anticysticercosis vaccine against rabbit experimental Taenia pisiformis cysticercosis. Vaccine 30:2760–2767CrossRefPubMedGoogle Scholar
  5. Buchanan RM, Tetland S, Wilson HL (2012) Low dose antigen exposure for a finite period in newborn rats prevents induction of mucosal tolerance. PLoS One 7:e51437CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Rep 15(1–2):1–7CrossRefPubMedGoogle Scholar
  7. Chavarría A, Roger B, Fragoso G, Tapia G, Fleury A, Dumas M, Dessein A, Larralde C, Sciutto E (2003) TH2 profile in asymptomatic Taenia solium human neurocysticercosis. Microbes Infect 5:1109–1115CrossRefPubMedGoogle Scholar
  8. Czyż M, Dembczyński R, Marecik R, Wojas-Turek J, Milczarek M, Pajtasz-Piasecka E, Wietrzyk J, Pniewski T (2014) Freeze-drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. Biomed Res Int 2014:485689. doi: 10.1155/2014/485689 PubMedPubMedCentralGoogle Scholar
  9. Fragoso G, Meneses G, Sciutto E, Fleury A, Larralde C (2008) Preferential growth of Taenia crassiceps cysticerci in female mice holds across several laboratory mice strains and parasite lines. J Parasitol 94:551–553CrossRefPubMedGoogle Scholar
  10. Fragoso G, Esquivel-Guadarrama F, Santana MA, Bobes RJ, Hernández B, Cervantes J, Segura R, Goldbaum FA, Sciutto E, Rosas G (2011) Heterologous prime-boost oral immunization with GK-1 peptide from Taenia crassiceps cysticerci induces protective immunity. Clin Vaccine Immunol 18:1067–1076CrossRefPubMedPubMedCentralGoogle Scholar
  11. Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744CrossRefPubMedGoogle Scholar
  12. Gauci C, Jayashi C, Lightowlers MW (2013) Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli. Bioengineered 4:343–347CrossRefPubMedGoogle Scholar
  13. Greenwood B (2014) The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci 369:20130433CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hernández M, Cabrera-Ponce JL, Fragoso G, López-Casillas F, Guevara-García A, Rosas G, León-Ramírez C, Juárez P, Sánchez-García G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective antycisticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260CrossRefPubMedGoogle Scholar
  15. Hernández M, Cervantes J, Cabrera-Ponce JL, Herrera-Estrella L, Rosas G, Villareal ML, Fragoso G, Sciutto E (2010) Development of an oral anti-cysticercosis vaccine delivered in genetically modified embryogenic callus of papaya. Transgenic Plant J 4(special issue 1):64–70Google Scholar
  16. Houten N, Zwick M, Menendez A, Scott J (2006) Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine 24(19):4188–4200CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huerta M, de Aluja AS, Fragoso G, Toledo A, Villalobos N, Hernández M, Gevorkian G, Acero G, Díaz A, Alvarez I, Avila R, Beltrán C, Garcia G, Martinez JJ, Larralde C, Sciutto E (2001) Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico. Vaccine 20(1–2):262–266CrossRefPubMedGoogle Scholar
  18. Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378CrossRefPubMedGoogle Scholar
  19. Kwon KC, Daniell H (2015) Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J 13:1017–1022CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lamichhane A, Azegamia T, Kiyonoa H (2014) The mucosal immune system for vaccine development. Vaccine 32:6711–6723CrossRefPubMedGoogle Scholar
  21. Lebre F, Borchard G, de Lima MC, Borges O (2011) Progress towards a needle-free hepatitis B vaccine. Pharm Res 28:986–1012CrossRefPubMedGoogle Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  23. Manoutcharian K, Díaz-Orea A, Gevorkian G, Fragoso G, Acero G, González E, De Aluja A, Villalobos N, Gómez-Conde E, Sciutto E (2004) Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Vet Immunol Immunopathol 99:11–24CrossRefPubMedGoogle Scholar
  24. Morales J, Martínez JJ, Manoutcharian K, Hernández M, Fleury Gevorkian G, Acero G, Blancas A, Toledo A, Cervantes J, Maza V, Quet F, Bonnabau H, de Aluja AS, Fragoso G, Larralde C, Sciutto E (2008) Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis. Vaccine 26:2899–2905CrossRefPubMedGoogle Scholar
  25. Morales J, de Aluja AS, Martínez JJ, Hernández M, Rosas G, Villalobos N, Hernández B, Blancas A, Manoutcharian K, Gevorkian G, Cervantes J, Díaz A, Fleury A, Fragoso G, Larralde C, Sciutto E (2011) Recombinant S3Pvac-phage anticysticercosis vaccine: simultaneous protection against cysticercosis and hydatid disease in rural pigs. Vet Parasitol 176:53–58CrossRefPubMedGoogle Scholar
  26. Okeniyi J, Ogunlesi T, Oyelami O, Adeyemi L (2007) Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. J Med Food 10:194–196CrossRefPubMedGoogle Scholar
  27. Ramos-Kuri M, Montoya RM, Padilla A, Govezensky T, Díaz ML, Sciutto E, Sotelo J, Larralde C (1992) Immunodiagnosis of neurocysticercosis. Disappointing performance of serology (enzyme-linked immunosorbent assay) in an unbiased sample of neurological patients. Arch Neurol 49:633–636CrossRefPubMedGoogle Scholar
  28. Rojo A, Pérez V, Bayardo A, Correa HJ, Cuarón J (2001) Pasta de canola como suplemento proteico en dietas para la finalización de cerdos. Técnica Pecuaria en México 39:179–192. http://www.redalyc.org/articulo.oa?id=61339301
  29. Rosales-Mendoza S, Salazar-González JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13:737–749CrossRefPubMedGoogle Scholar
  30. Rosales-Mendoza S, Angulo C, Meza B (2016) Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol 34:124–136CrossRefPubMedGoogle Scholar
  31. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY (2011) Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin-induced diabetic mice. Nat Prod Res 25:1982–1987CrossRefPubMedGoogle Scholar
  32. Savelkoul HF, Ferro VA, Strioga MM, Schijns VE (2015) Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 3:148–171CrossRefGoogle Scholar
  33. Sciutto E, Fragoso G, de Aluja AS, Hernández M, Rosas G, Larralde C (2008) Vaccines against cysticercosis. Curr Top Med Chem 8(5):415–423CrossRefPubMedGoogle Scholar
  34. Segura-Velázquez R, Fragoso G, Sciutto E, Sarukhan A (2009) Towards identification of the mechanisms of action of parasite-derived peptide GK1 on the immunogenicity of an influenza vaccine. Clin Vaccine Immunol 16:1338–1343CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shirbaghaee Z (2016) Different applications of virus-like particles in biology and medicine: vaccination and delivery systems. Biopolymers 105:113–132CrossRefPubMedGoogle Scholar
  36. Stein HH, Roth JA, Sotak KM, Rojas OJ (2013) Nutritional value of soy products fed to pigs. Swine Focus #004. The University of Illinois at Urbana-Champaign. http://nutrition.ansci.illinois.edu/sites/default/files/SwineFocus004.pdf
  37. Stertman L, Lundgren E, Sjoholm I (2006) Starch microparticles as a vaccine adjuvant: only uptake in Peyer’s patches decides the profile of the immune response. Vaccine 24:3661–3668CrossRefPubMedGoogle Scholar
  38. Toledo A, Larralde C, Fragoso G, Gevorkian G, Manoutcharian K, Hernández M, Acero G, Rosas G, López-Casillas F, Garfias CK, Vázquez R, Terrazas I, Sciutto E (1999) Towards a Taenia solium cysticercosis vaccine: an epitope shared by Taenia crassiceps and Taenia solium protects mice against experimental cysticercosis. Infect Immun 67:2522–2530PubMedPubMedCentralGoogle Scholar
  39. Toledo A, Fragoso G, Rosas G, Hernandez M, Gevorkian G, López-Casillas F, Hernández B, Acero G, Huerta M, Larralde C, Sciutto E (2001) Two epitopes shared by Taenia crassiceps and Taenia solium confer protection against murine T. crassiceps cysticercosis along with a prominent T1 response. Infect Immun 69:1766–1773CrossRefPubMedPubMedCentralGoogle Scholar
  40. WHO (2014) Weekly epidemiological record, vol 47. World Health Organization, pp 517–528. http://www.who.int/wer/2014/en
  41. Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 7:e44405CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gladis Fragoso
    • 1
  • Marisela Hernández
    • 1
  • Jacquelynne Cervantes-Torres
    • 1
  • Rubén Ramírez-Aquino
    • 2
  • Héctor Chapula
    • 3
  • Nelly Villalobos
    • 3
  • René Segura-Velázquez
    • 1
  • Alfredo Figueroa
    • 4
  • Iván Flores
    • 8
  • Herminio Jiménez
    • 2
  • Laura Adalid
    • 6
  • Gabriela Rosas
    • 7
  • Luis Galvez
    • 2
  • Elias Pezzat
    • 2
  • Elizabeth Monreal-Escalante
    • 5
  • Sergio Rosales-Mendoza
    • 5
  • Luis G. Vazquez
    • 2
  • Edda Sciutto
    • 1
  1. 1.Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Facultad de MedicinaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Unidad Académica de Ciencias Químico BiológicasUniversidad Autónoma de GuerreroChilpancingoMexico
  5. 5.Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  6. 6.Instituto Nacional de Neurología y Neurocirugía, SSAMexicoMexico
  7. 7.Facultad de MedicinaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  8. 8.Facultad de Ciencias AgropecuariasUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations