Advertisement

Planta

, Volume 244, Issue 3, pp 545–555 | Cite as

Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones

  • Danuše Tarkowská
  • Miroslav Strnad
Review

Abstract

Main conclusion

The present review summarises current knowledge of phytoecdysteroids’ biosynthesis, distribution within plants, biological importance and relations to plant hormones.

Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28–29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids’ biosynthesis, distribution within plants, biological importance and relations to plant hormones.

Keywords

Phytoecdysteroids Ecdysteroids 20-Hydroxyecdysone Plant hormones Signalling molecules 

Abbreviations

2,4-D

2,4-Dichlorophenoxy acetic acid

20E

20-Hydroxyecdysone

ABA

Abscisic acid

BRs

Brassinosteroids

CKs

Cytokinins

ECs

Ecdysteroids

GAs

Gibberellins

IAA

Indole-3-acetic acid

JA

Jasmonic acid

JAs

Jasmonates

MeJA

Methyl jasmonate

PEs

Phytoecdysteroids

SLs

Strigolactones

Notes

Acknowledgments

Financial support from the Ministry of Education, Youth and Sport of the Czech Republic through the National Program of Sustainability (Grant No. LO 1204) is gratefully acknowledged. The authors would like to also express thanks to Sees-editing Ltd., Prof. Claus Wasternack and Dr. Juraj Harmatha for their critical reading and editing of the manuscript.

References

  1. Adler JH, Grebenok RJ (1995) Biosynthesis and distribution of insect-molting hormones in plants—a review. Lipids 30:257–262. doi: 10.1007/BF02537830 CrossRefPubMedGoogle Scholar
  2. Ahmad VU, Khaliq-Uz-Zaman SM, Ali MS, Perveen S, Ahmed W (1996) An antimicrobial ecdysone from Asparagus dumosus. Fitoterapia 67:88–91Google Scholar
  3. Bajguz A, Dinan L (2004) Effects of ecdysteroids on Chlorella vulgaris. Physiol Plant 121:349–357. doi: 10.1111/j.1399-3054.2004.00329.x CrossRefGoogle Scholar
  4. Bakrim A, Lamhamdi M, Sayah F, Chibi F (2007) Effects of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicum esculentum) seed germination and seedlings growth. Afr J Biotechnol 6:2792–2802CrossRefGoogle Scholar
  5. Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46:844–854. doi: 10.1016/j.plaphy.2008.06.002 CrossRefPubMedGoogle Scholar
  6. Becker JL, Roussaux J (1981) 6-Benzylaminopurine as a growth factor for Drosophila melanogaster cells grown in vitro. In: Guern J, Peaud-Lenoël C (eds) Metabolism and molecular activities of cytokinins. Springer, Berlin, pp 319–328CrossRefGoogle Scholar
  7. Bergamasco R, Horn DHS (1983) Distribution and role of insect hormones in plants. Endocrinology of insects. A. R. Liss Inc., New York, pp 627–654Google Scholar
  8. Butenandt A, Karlson P (1954) Über die Isolierung eines Metamorphose-hormons der Insekten in kristallisierter Form. Z Naturforsch 9B:389–391Google Scholar
  9. Canals D, Irurre-Santilari J, Casas J (2005) The first cytochrome P450 in ferns. FEBS J 272:4817–4825. doi: 10.1111/j.1742-4658.2005.04897.x CrossRefPubMedGoogle Scholar
  10. Casati S, Ottria R, Baldoli E, Lopez E, Maier JAM, Ciuffreda P (2011) Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Res 31:3401–3406PubMedGoogle Scholar
  11. Corio-Costet MF, Chapuis C, Moulilett JF, Delbeckque JP (1993) Sterol and ecdysteroid profiles of Serratula tinctoria (L.): plant and cell cultures producing steroids. Insect Biochem Mol Biol 23:175–180. doi: 10.1016/0965-1748(93)90098-D CrossRefGoogle Scholar
  12. Corio-Costet MF, Chapuis L, Delbecque JP (1996) Serratula tinctoria (Dyer’s savory): in vitro culture and the production of ecdysteroids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agricultural and forestry. Trees IV, Medicinal and Aromatic Plants, vol 37. Springer, Berlin, pp 384–401. doi: 10.1007/978-3-662-08618-6_23
  13. DellaGreca M, D’Abrosca B, Fiorentino A, Previtera L, Zarrelli A (2005) Structure elucidation and phytotoxicity of ecdysteroids from Chenopodium album. Chem Biodivers 2:457–462. doi: 10.1002/cbdv.200590025 CrossRefPubMedGoogle Scholar
  14. Dinan L (1992) The analysis of phytoecdysteroids in single (preflowering stage) specimens of fat hen, Chenopodium album. Phytochem Anal 3:132–138. doi: 10.1002/pca.2800030309 CrossRefGoogle Scholar
  15. Dinan L (1998) A strategy towards the elucidation of the contribution made by phytoecdysteroids to the deterrence of invertebrate predators on plants. Russ J Plant Physiol 45:296–305Google Scholar
  16. Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339. doi: 10.1016/S0031-9422(01)00078-4 CrossRefPubMedGoogle Scholar
  17. Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol 72:126–141. doi: 10.1002/arch.20334 CrossRefPubMedGoogle Scholar
  18. Dinan L, Hormann R (2005) Ecdysteroid agonists and antagonists. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 3. Elsevier, Amsterdam, pp 197–242CrossRefGoogle Scholar
  19. Dinan L, Savcenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58:121–1132. doi: 10.1007/PL00000926 CrossRefGoogle Scholar
  20. Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Berlin, pp 3–45. doi: 10.1007/978-1-4020-9112-4_1
  21. Dobrikova AG, Vladkova RS, Rashkov GD, Todinova SJ, Krumova SB, Apostolova EL (2014) Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. Plant Physiol Biochem 80:75–82. doi: 10.1016/j.plaphy.2014.03.022 CrossRefPubMedGoogle Scholar
  22. Dreier SI, Towers GHN (1988) Activity of ecdysterone in selected plant growth bioassays. J Plant Physiol 132:509–512. doi: 10.1016/S0176-1617(88)80073-7 CrossRefGoogle Scholar
  23. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716. doi: 10.1073/pnas.87.19.7713 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Faust JR, Dice JF (1991) Evidence for isopentenyladenine modification on a cell cycle-regulated protein. J Biol Chem 266:9961–9970PubMedGoogle Scholar
  25. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407. doi: 10.1074/jbc.M801760200 CrossRefPubMedGoogle Scholar
  26. Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513. doi: 10.1074/jbc.M109.061432 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430. doi: 10.1038/343425a0 CrossRefPubMedGoogle Scholar
  28. Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185. doi: 10.1016/j.foodchem.2014.04.088 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grebenok RJ, Adler JH (1993) Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 33:341–347. doi: 10.1016/0031-9422(93)85514-R CrossRefGoogle Scholar
  30. Grebenok RJ, Ripa PV, Adler JH (1991) Occurrence and levels of ecdysteroids in spinach. Lipids 26:666–668. doi: 10.1007/BF02536433 CrossRefGoogle Scholar
  31. Grebenok RJ, Galbraith DW, Benveniste I, Feyereisen R (1996) Ecdysone 20-monooxygenase, a cytochrome P450 enzyme from spinach, Spinacia oleracea. Phytochemistry 420:927–933. doi: 10.1016/0031-9422(96)00094-5 CrossRefGoogle Scholar
  32. Guo DA, Vekatramesh M, Nes WD (1995) Developmental regulation of sterol biosynthesis in Zea mays. Lipids 30:203–219. doi: 10.1007/BF02537823 CrossRefPubMedGoogle Scholar
  33. Harborne JB (1988) In: Introduction to ecological biochemistry, 3rd edn. Academic Press, New York, pp 120–146Google Scholar
  34. Hendrix SD, Jones RL (1972) The activity of β-ecdysone in four gibberellin bioassays. Plant Physiol 50:199–200. doi: 10.1104/pp.50.1.199 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Holá D, Rothova O, Kocova M, Fridrichova L, Macek T (2012) Phytoecdysteroids together with brassinosteroids stimulate oxygen-evolving activity of photosystem II. Plant Biology Congress. Book of Abstracts, Freiburg, p 771Google Scholar
  36. Holá D, Kočová M, Rothová O, Tůmová L, Kamlar M, Macek T (2013) Exogenously applied 20-hydroxyecdysone increases the net photosynthetic rate but does not affect the photosynthetic electron transport or the content of photosynthetic pigments in Tetragonia tetragonioides L. Acta Physiol Plant 35:3489–3495. doi: 10.1007/s11738-013-1379-6 CrossRefGoogle Scholar
  37. Horn DHS, Bergamasco R (1985) Chemistry of ecdysteroids. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 7. Pergamon Press, New York, pp 185–248Google Scholar
  38. Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. doi: 10.1146/annurev.arplant.59.032607.092825 CrossRefPubMedGoogle Scholar
  39. Imai S, Toyosato T, Sakai M, Sato Y, Fujioka S, Murata E, Goto M (1969) Screening results of plants for phytoecdysones. Chem Pharm Bull 17:335–339CrossRefPubMedGoogle Scholar
  40. Isaac RE, Rose ME, Rees HH, Goodwin TW (1982) Identification of ecdysone-22-phosphate and 2-deoxyecysone-22-phosphate in eggs of the desert locust, Schistocerca gregaria, by fast atom bombardment mass spectrometry and NMR spectroscopy. J Chem Soc Chem Commun 4:249–251. doi: 10.1039/c39820000249 CrossRefGoogle Scholar
  41. Kamlar M, Rothova O, Salajkova S, Tarkowska D, Drasar P, Kocova M, Harmatha J, Hola D, Kohout L, Macek T (2015) The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L. Steroids 97:107–112. doi: 10.1016/j.steroids.2014.12.024 CrossRefPubMedGoogle Scholar
  42. Kapur P, Wuttke W, Jarry H, Seidlova-Wuttke D (2010) Beneficial effects of beta-ecdysone on the joint, epiphyseal cartilage tissue and trabecular bone in ovariectomized rats. Phytomedicine 17:350–355. doi: 10.1016/j.phymed.2010.01.005 CrossRefPubMedGoogle Scholar
  43. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194. doi: 10.1074/jbc.M208659200 CrossRefPubMedGoogle Scholar
  44. Kholodova YD, Baltaev U, Volovenko VO, Gorovits MB, Abubakirov NK (1979) Phytoecdisones of Serratula xeranthemoides. Khim Priv Soedin 2:171–174Google Scholar
  45. Koudela K, Tenora I, Bajer J, Maťhová A, Sláma K (1995) Stimulation of growth and development in Japanese quails after oral administration of ecdysteroid-containing diet. Eur J Entomol 92:349–354Google Scholar
  46. Kubo I, Hanke FJ (1986) Chemical methods for isolating and identifying phytochemicals biologically active in insects. In: Miller JR, Miller TA (eds) Insect plant interactions. Springer, New York, pp 225–249CrossRefGoogle Scholar
  47. Kubo I, Klocke JA (1983) Isolation of phytoecdysones as insect ecdysis inhibitors and feeding deterrents. In: Hedin EA (ed) Plant resistance to insects. American Chemical Society, Washington, DC, pp 329–346CrossRefGoogle Scholar
  48. Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault J-P, Lafont R (2011) Ecdysteroids from Chenopodium quinoa Willd., an ancient Andean crop of high nutritional value. Food Chem 125:1226–1234. doi: 10.1016/j.foodchem.2010.10.039 CrossRefGoogle Scholar
  49. Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:7CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lafont R, Harmatha J, Marion-Poll F, Dinan L (2002) Ecdybase—the ecdysone handbook, 3rd edn. Cybersales, Praha. http://ecdybase.org
  51. Lagueux M, Hetru C, Goltzene F, Kappler C, Hoffmann JA (1979) Ecdysone titre and metabolism in relation to cuticulogenesis in embryos of Locusta migratoria. J Insect Physiol 25:709–723. doi: 10.1016/0022-1910(79)90123-9 CrossRefGoogle Scholar
  52. Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19:207–226. doi: 10.1677/jme.0.0190207 CrossRefPubMedGoogle Scholar
  53. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. doi: 10.1146/annurev.arplant.50.1.47 CrossRefPubMedGoogle Scholar
  54. Macek T, Uhlik O, Kamlar M, Harmatha J, Kohout L (2008) Method of increasing of the photosynthetic carbon dioxide assimilation yield (IOCB AS CR). PCT Int Appl WO 2008(125069):A2Google Scholar
  55. Macháčková I, Vágner M, Sláma K (1995) Comparison between the effects of 20-hydroxyecdysone and phytohormones on growth and development in plants. Eur J Entomol 92:309–316Google Scholar
  56. MacMillan J (1998) Gibberellin metabolism. Pure Appl Chem 50:995–1004. doi: 10.1351/pac197850090995 Google Scholar
  57. Maršálek B, Šimek M, Smith RJ (1992) The effect of ecdysone on the cyanobacterium Nostoc 6720. Z Naturforsch 47c:726–730Google Scholar
  58. Nes WR (1977) Biochemistry of plant sterols. Adv Lipid Res 15:233–324CrossRefGoogle Scholar
  59. Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, pp 411–533Google Scholar
  60. Niwa R, Niwa RS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292. doi: 10.1080/09168451.2014.942250 CrossRefPubMedGoogle Scholar
  61. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A-M (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966. doi: 10.1002/(SICI)1097-0010(20000515)80:7<939:AID-JSFA644>3.3.CO;2-3 CrossRefGoogle Scholar
  62. Rajabi M, Signorelli P, Gorincioi E, Ghidoni R, Santaniello E (2010) Antiproliferative activity of N6-isopentenyladenosine on MCF-7 breast cancer cells: cell cycle analysis and DNA-binding study. DNA Cell Biol 29:687–691. doi: 10.1089/dna.2010.1073 CrossRefPubMedGoogle Scholar
  63. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574. doi: 10.1039/a709175c CrossRefPubMedGoogle Scholar
  64. Rothová O, Holá D, Kočová M, Tůmová L, Hnilička F, Hniličková H, Kamlar M, Macek T (2014) 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids 85:44–57. doi: 10.1016/j.steroids.2014.04.006 CrossRefPubMedGoogle Scholar
  65. Salt TA, Adler JH (1985) Diversity of sterol composition in the family Chenopodiaceae. Lipids 20:594–601. doi: 10.1007/BF02534285 CrossRefGoogle Scholar
  66. Savchenko T, Whiting P, Šik V, Underwood E, Sarker SD, Dinan L (1998) Distribution and identities of phytoecdysteroids in the genus Briza (Gramineae). Biochem Syst Ecol 26:781–791. doi: 10.1016/S0305-1978(98)00044-1 CrossRefGoogle Scholar
  67. Schmelz EA, Grebenok RJ, Galbraith DW, Bowers WS (1998) Damage-induced accumulation of phytoecdysteroids in spinach: a rapid root response involving the octadecanoic acid pathway. J Chem Ecol 24:339–360. doi: 10.1023/A:1022588610232 CrossRefGoogle Scholar
  68. Schmelz EA, Grebenok RJ, Galbraith DW, Bowers WS (1999) Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J Chem Ecol 25:1739–1757. doi: 10.1023/A:1020969413567 CrossRefGoogle Scholar
  69. Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51:204–221. doi: 10.1002/arch.10062 CrossRefPubMedGoogle Scholar
  70. Seidlova-Wuttke D, Christel D, Kapur P, Nguyen BT, Jarry H, Wuttke W (2010) Beta-ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine 17:884–889. doi: 10.1016/j.phymed.2010.03.021 CrossRefPubMedGoogle Scholar
  71. Sharma SP, Kaur P, Rattan SIS (1995) Plant-growth hormone kinetin delays ageing, prolongs the life span and slows development of the fruit fly Zaprionus paravittiger. Biochem Biophys Res Commun 216:1067–1071. doi: 10.1006/bbrc.1995.2729 CrossRefPubMedGoogle Scholar
  72. Slama K, Lafont R (1995) Insect hormones—ecdysteroids: their presence and actions in vertebrates. Eur J Entomol 92:355–377Google Scholar
  73. Soriano IR, Riley IT, Potter MJ, Bowers WS (2004) Phytoecdysteroids: a novel defense against plant-parasitic nematodes. J Chem Ecol 30:651–654. doi: 10.1023/B:JOEC.0000045584.56515.11 CrossRefGoogle Scholar
  74. Syrov VN, Khushbaktova ZA (1996) Wound-healing effects of ecdysteroids. Doklady Akademii Nauk Respubliki Uzbekistana 12:47–50Google Scholar
  75. Tanimoto S, Harada H (1982) Effect of cytokinin and anticytokinin on the initial stage of adventitious bud differentiation in the epidermis of Torenia stem segments. Plant Cell Physiol 23:1371–1376Google Scholar
  76. Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, Rolčík J, Strnad M (2014) Quo vadis plant hormone analysis? Planta 240:55–76. doi: 10.1007/s00425-014-2063-9 CrossRefPubMedGoogle Scholar
  77. Tsoupras G, Hetru C, Luu B, Lagueux M, Constantin E, Hoffmann JA (1982a) The major conjugates of ecdysteroids in young eggs and in embryos of Locusta-migratoria. Tetrahedron Lett 23:2045–2048. doi: 10.1016/S0040-4039(00)87256-1 CrossRefGoogle Scholar
  78. Tsoupras G, Luu B, Hoffmann JA (1982b) Isolation and identification of three ecdysteroid conjugates with a C-20 hydroxy group in eggs of Locusta migratoria. Steroids 40:551–560. doi: 10.1016/0039-128X(82)90075-7 CrossRefPubMedGoogle Scholar
  79. Tsoupras G, Luu B, Hoffmann JA (1983) A cytokinin (isopentenyl-adenosyl-mononucleotide) linked to ecdysone in newly laid eggs of Locusta migratoria. Science 220:507–509. doi: 10.1126/science.220.4596.507 CrossRefPubMedGoogle Scholar
  80. Udalova ZV, Zinov’eva SV, Vasil’eva IS, Paseshnichenko VA (2004) Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Appl Biochem Microbiol 40:93–97. doi: 10.1023/B:ABIM.0000010362.79928.77 CrossRefGoogle Scholar
  81. Uozumi N, Makino S, Kobayashi T (1995) 20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate content based on kinetic model. J Ferment Bioeng 80:362–368. doi: 10.1016/0922-338X(95)94205-6 CrossRefGoogle Scholar
  82. Voigt B, Whiting P, Dinan L (2001) The ecdysteroid agonist/antagonist and brassinosteroid-like activities of synthetic brassinosteroid/ecdysteroid hybrid molecules. Cell Mol Life Sci 58:1133–1140. doi: 10.1007/PL00000927 CrossRefPubMedGoogle Scholar
  83. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. doi: 10.1093/aob/mct067 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu S, Patterson GW, Lusby WR, Schmid KM, Salt TA (1990) The distribution and phylogenetic significance of desmethylsterols in Chenopodium and Atriplex: coexistence of Δ7- and Δ5-sterols. Lipids 25:61–64. doi: 10.1007/BF02562429 CrossRefGoogle Scholar
  85. Zibareva L (2000) Distribution and levels of phytoecdysteroids in plants of the genus Silene during development. Arch Insect Biochem Physiol 43:1–8. doi: 10.1002/(SICI)1520-6327(200001)43:1<1:AID-ARCH1>3.0.CO;2-D CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations