Advertisement

Planta

, Volume 244, Issue 3, pp 529–543 | Cite as

Vitamins for enhancing plant resistance

  • Hatem BoubakriEmail author
  • Mahmoud Gargouri
  • Ahmed Mliki
  • Faiçal Brini
  • Julie Chong
  • Moez Jbara
Review

Abstract

Main conclusion

This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors.

Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

Keywords

Elicitors Hormones Induced resistance Plants Pathogens Vitamins Signalling pathways 

Abbreviations

ET

Ethylene

JA

Jasmonic acid

IR

Induced resistance

PR

Pathogenesis-related protein

SA

Salicylic acid

NPR1

Non-expressor of PR1

Notes

Acknowledgments

The author thanks the Ministry of Higher Education and Scientific Research of Tunisia for the support.

References

  1. Abdel-Monaim MF (2011) Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. Afr J Biotechnol 10:10842–10855CrossRefGoogle Scholar
  2. Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138(3):1505–1515PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahn IP, Kim S, Lee YH, Suh SC (2007) Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol 143(2):838–848PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akberova S (2002) New biological properties of p-aminobenzoic acid. Biol Bull Russian Acad Sci 29(4):390–393CrossRefGoogle Scholar
  5. Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA (2014) Dissecting the transcriptional response to elicitors in vitis vinifera cells. PLoS One 9(10):e109777. doi: 10.1371/journal.pone.0109777 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antognoni F, Faudale M, Poli F, Biondi S (2009) Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. Plant Biol (Stuttgart, Germany) 11(2):161–169. doi: 10.1111/j.1438-8677.2008.00110.x CrossRefGoogle Scholar
  7. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569(1–3):1–9PubMedCrossRefGoogle Scholar
  8. Asai S, Mase K, Yoshioka H (2010) A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance. Plant J 62(6):911–924. doi: 10.1111/j.0960-7412.2010.04206.x PubMedGoogle Scholar
  9. Asensi-Fabado MA, Munne-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15(10):582–592. doi: 10.1016/j.tplants.2010.07.003 PubMedCrossRefGoogle Scholar
  10. Azami-Sardooei Z, França SC, De Vleesschauwer D, Höfte M (2010) Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol Mol Plant Pathol 75(1):23–29CrossRefGoogle Scholar
  11. Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L, Visarius T, Zingg JM (2004) Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 1031:86–95. doi: 10.1196/annals.1331.009 PubMedCrossRefGoogle Scholar
  12. Bahuguna RN, Joshi R, Shukla A, Pandey M, Kumar J (2012) Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiol Biochem PPB 57:159–167. doi: 10.1016/j.plaphy.2012.05.003 PubMedCrossRefGoogle Scholar
  13. Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytorem 13(5):465–491CrossRefGoogle Scholar
  14. Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134(4):1784–1792. doi: 10.1104/pp.103.032185 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425–431. doi: 10.1016/j.pbi.2007.06.002 PubMedCrossRefGoogle Scholar
  16. Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54(24):9119–9125. doi: 10.1021/jf0618022 PubMedCrossRefGoogle Scholar
  17. Borges AA, Borges-Perez A, Fernandez-Falcon M (2003a) Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis. J Agric Food Chem 51(18):5326–5328PubMedCrossRefGoogle Scholar
  18. Borges AA, Cools H, Lucas JA (2003b) Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol 52(4):429–436CrossRefGoogle Scholar
  19. Borges AA, Borges-Pérez A, Fernández-Falcón M (2004) Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection 23(12):1245–1247CrossRefGoogle Scholar
  20. Borges AA, Dobon A, Expósito-Rodríguez M, Jiménez-Arias D, Borges-Pérez A, Casañas-Sánchez V, Pérez JA, Luis JC, Tornero P (2009) Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol J 7(8):744–762PubMedCrossRefGoogle Scholar
  21. Borges AA, Jiménez-Arias D, Expósito-Rodríguez M, Sandalio LM, Pérez JA (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 5:642. doi: 10.3389/fpls.2014.00642 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Borges-Rodríguez AA, Borges-Pérez A (2010) Compositions for controlling the psyllid Trioza erytreae and Diaphorina citri, vectors of bacteria of the genus Candidatus liberibacter causal agents of the most serious citrus disease known as Huanglongbing (HLB). Patent WO2012/ 045901Google Scholar
  23. Botanga CJ, Bethke G, Chen Z, Gallie DR, Fiehn O, Glazebrook J (2012) Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mole Plant Microbe Interact MPMI 25(12):1628–1638. doi: 10.1094/mpmi-07-12-0179-r CrossRefGoogle Scholar
  24. Boubakri H (2013) Metabolomics and systems biology. Metabol Off J Metabol Soc 2(7):145Google Scholar
  25. Boubakri H, Wahab MA, Chong J, Bertsch C, Mliki A, Soustre-Gacougnolle I (2012) Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiol Biochem PPB 57:120–133. doi: 10.1016/j.plaphy.2012.05.016 PubMedCrossRefGoogle Scholar
  26. Boubakri H, Chong J, Poutaraud A, Schmitt C, Bertsch C, Mliki A, Masson J, Soustre-Gacougnolle I (2013a) Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine. Eur J Plant Pathol 136(4):837–855CrossRefGoogle Scholar
  27. Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I (2013b) Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol 13:31. doi: 10.1186/1471-2229-13-31 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boubakri H, Wahab MA, Chong J, Gertz C, Gandoura S, Mliki A, Bertsch C, Soustre-Gacougnolle I (2013c) Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces Plasmopara viticola infection. J Plant Physiol 170(18):1561–1568. doi: 10.1016/j.jplph.2013.06.008 PubMedCrossRefGoogle Scholar
  29. Boubakri H, Hadj-Brahim A, Schmitt C, Soustre-Gacougnolle I, Mliki A (2015) Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. N Z J Crop Hortic Sci 43(4):261–274. doi: 10.1080/01140671.2015.1049620 CrossRefGoogle Scholar
  30. Brauchle E, Thude S, Brucker SY, Schenke-Layland K (2014) Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Reports 4:4698. doi: 10.1038/srep04698 Google Scholar
  31. Caretto S, Nisi R, Paradiso A, De Gara L (2010) Tocopherol production in plant cell cultures. Mol Nutr Food Res 54(5):726–730. doi: 10.1002/mnfr.200900397 PubMedCrossRefGoogle Scholar
  32. Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J 10(3):491–503. doi: 10.1046/j.1365-313X.1996.10030491.x CrossRefGoogle Scholar
  33. Chen WJ, Delmotte F, Cervera SR, Douence L, Greif C, Corio-Costet MF (2007) At least two origins of fungicide resistance in grapevine downy mildew populations. Appl Environ Microbiol 73(16):5162–5172. doi: 10.1128/AEM.00507-07 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Rev 5(005):1–25. doi: 10.1079/PAVSNNR20105005 CrossRefGoogle Scholar
  35. Cipollini D, Lieurance DM (2012) Expression and costs of induced defense traits in Alliaria petiolata, a widespread invasive plant. Basic Appl Ecol 13(5):432–440. doi: 10.1016/j.baae.2012.06.007 CrossRefGoogle Scholar
  36. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96(7):4198–4203PubMedPubMedCentralCrossRefGoogle Scholar
  37. Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154(2):847–856PubMedPubMedCentralGoogle Scholar
  38. Delaney T, Friedrich L, Ryals J (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci 92(14):6602–6606PubMedPubMedCentralCrossRefGoogle Scholar
  39. Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15(9):2181–2191PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dias CV, Mendes JS, dos Santos AC, Pirovani CP, da Silva Gesteira A, Micheli F, Gramacho KP, Hammerstone J, Mazzafera P, de Mattos Cascardo JC (2011) Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol Biochem PPB 49(8):917–922. doi: 10.1016/j.plaphy.2011.05.004 PubMedCrossRefGoogle Scholar
  41. Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4(4):309–314PubMedCrossRefGoogle Scholar
  42. Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90(8):801–811. doi: 10.1094/phyto.2000.90.8.801 PubMedCrossRefGoogle Scholar
  43. Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20(2):207–215PubMedCrossRefGoogle Scholar
  44. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–78. doi: 10.1016/j.tplants.2004.12.006 PubMedCrossRefGoogle Scholar
  45. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442. doi: 10.1016/j.pbi.2006.05.014 PubMedCrossRefGoogle Scholar
  46. Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297. doi: 10.3390/ijms140510242 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gala R, Mita G, Caretto S (2005) Improving-tocopherol production in plant cell cultures. J Plant Physiol 162(7):782–784. doi: 10.1016/j.jplph.2005.04.010 PubMedCrossRefGoogle Scholar
  48. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mole Plant Microbe Interact MPMI 19(7):711–724. doi: 10.1094/mpmi-19-0711 CrossRefGoogle Scholar
  49. Green R, Fluhr R (1995) UV-B-Induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7(2):203–212. doi: 10.1105/tpc.7.2.203 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hamada AM, Jonsson LM (2013) Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–141. doi: 10.1016/j.phytochem.2013.05.012 PubMedCrossRefGoogle Scholar
  51. Hann DR, Rathjen JP (2010) The long and winding road: virulence effector proteins of plant pathogenic bacteria. Cell Mol Life Sci 67(20):3425–3434. doi: 10.1007/s00018-010-0428-1 PubMedCrossRefGoogle Scholar
  52. Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88(4):645–654CrossRefGoogle Scholar
  53. Heil M, Fiala B, Maschwitz U, Linsenmair KE (2001) On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126(3):395–403CrossRefGoogle Scholar
  54. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242. doi: 10.1124/pr.110.002980 PubMedCrossRefGoogle Scholar
  55. Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284PubMedPubMedCentralGoogle Scholar
  56. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  57. Kelman A, Cook R (1977) Plant pathology in the People’s Republic of China. Ann Rev Phytopathol 15(1):409–429CrossRefGoogle Scholar
  58. Khan TA, Mazid M, Mohammad F (2012) Potential of Ascorbic acid against oxidative burst in plants under biotic stress: a review. J Ind Res Technol 2(2):72–80Google Scholar
  59. Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36(1):138–151. doi: 10.1016/j.envint.2009.10.005 PubMedCrossRefGoogle Scholar
  60. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331PubMedCrossRefGoogle Scholar
  61. Kus JV, Zaton K, Sarkar R, Cameron RK (2002) Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14(2):479–490PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lehmann J (2009) ‘Terra preta Nova – where to from here?’. In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A (eds) Terra preta Nova: a tribute to Wim Sombroek, Springer, Berlin, pp 473–486Google Scholar
  63. Lehmann M, Laxa M, Sweetlove LJ, Fernie AR, Obata T (2012) Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabol Off J Metabol Soc 8(1):143–153. doi: 10.1007/s11306-011-0296-1 Google Scholar
  64. Liu S, Liu Z, Fitt BD, Evans N, Foster S, Huang Y, Latunde-Dada A, Lucas J (2006) Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathol 55(3):401–412CrossRefGoogle Scholar
  65. Liu F, Wei F, Wang L, Liu H, Zhu X, Liang Y (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant Pathol 74(5):330–336CrossRefGoogle Scholar
  66. Lyon G (2007) Agents that can elicit induced resistance. Induced resistance for plant defence: a sustainable approach to crop protection. Blackwell Publishing Ltd, Oxford, pp 9–29CrossRefGoogle Scholar
  67. Maki T, Takeda K (2000) Benzoic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/14356007.a03_555
  68. Maksymiec W, Krupa Z (2002) The in vivo and in vitro influence of methyl jasmonate on oxidative processes in Arabidopsis thaliana leaves. Acta Physiol Plant 24(4):351–357. doi: 10.1007/s11738-002-0029-1 CrossRefGoogle Scholar
  69. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944PubMedCrossRefGoogle Scholar
  71. Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mole Plant Microbe Interact MPMI 23(3):340–351. doi: 10.1094/mpmi-23-3-0340 CrossRefGoogle Scholar
  72. Munne-Bosch S, Weiler EW, Alegre L, Muller M, Duchting P, Falk J (2007) Alpha-tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225(3):681–691. doi: 10.1007/s00425-006-0375-0 PubMedCrossRefGoogle Scholar
  73. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1. 2 transcription. Plant J 50(1):128–139PubMedCrossRefGoogle Scholar
  74. Negis Y, Aytan N, Ozer N, Ogru E, Libinaki R, Gianello R, Azzi A, Zingg JM (2006) The effect of tocopheryl phosphates on atherosclerosis progression in rabbits fed with a high cholesterol diet. Arch Biochem Biophys 450(1):63–66. doi: 10.1016/j.abb.2006.02.027 PubMedCrossRefGoogle Scholar
  75. Pastor V, Luna E, Ton J, Cerezo M, Garcia-Agustin P, Flors V (2013) Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mole Plant Microbe Interact MPMI 26(11):1334–1344. doi: 10.1094/mpmi-04-13-0117-r CrossRefGoogle Scholar
  76. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139(3):1291–1303. doi: 10.1104/pp.105.067686 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pieterse CMJ, Poelman EH, Van Wees SCM, Dicke M (2013) Induced plant responses to microbes and insects. Front Plant Sci 4:475. doi: 10.3389/fpls.2013.00475 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pushpalatha H, Mythrashree S, Shetty R, Geetha N, Sharathchandra R, Amruthesh K, Shetty HS (2007) Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 26(11):1674–1681CrossRefGoogle Scholar
  79. Puthusseri B, Divya P, Lokesh V, Neelwarne B (2012) Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). Plant Foods Human Nutr (Dordrecht, Netherlands) 67(2):162–170. doi: 10.1007/s11130-012-0285-1 CrossRefGoogle Scholar
  80. Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381–404PubMedCrossRefGoogle Scholar
  81. Reglinski T, Vanneste J, Wurms K, Gould E, Spinelli F, Rikkerink E (2013) Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv actinidiae. Front Plant Sci 4. doi: 10.3389/fpls.2013.00024
  82. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809PubMedPubMedCentralCrossRefGoogle Scholar
  83. Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathol J 22(4):339–347CrossRefGoogle Scholar
  84. Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274. doi: 10.3389/fpls.2014.00274 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sheehan D, MEADE G, Foley V, Dowd C (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sierra I, Vidal-Valverde C (1999) Kinetics of free and glycosylated B6 vitamers, thiamin and riboflavin during germination of pea seeds. J Sci Food Agric 79(2):307–310CrossRefGoogle Scholar
  87. Song GC, Choi HK, Ryu CM (2013) The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann Bot 111(5):925–934PubMedPubMedCentralCrossRefGoogle Scholar
  88. Taheri P, Hofte M (2007) Riboflavin-induced resistance against rice sheath blight functions through the potentiation of lignin formation and jasmonic acid signalling pathway. Commun Agric Appl Biol Sci 72(2):309–313PubMedGoogle Scholar
  89. Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167(3):201–208. doi: 10.1016/j.jplph.2009.08.003 PubMedCrossRefGoogle Scholar
  90. Taheri P, Tarighi S (2011) A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J Plant Physiol 168(10):1114–1122. doi: 10.1016/j.jplph.2011.01.001 PubMedCrossRefGoogle Scholar
  91. Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151(1):421–432PubMedPubMedCentralCrossRefGoogle Scholar
  92. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(suppl 1):S153–S164. doi: 10.1105/tpc.000679 PubMedPubMedCentralGoogle Scholar
  93. van Hulten M, Pelser M, Van Loon L, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607PubMedPubMedCentralCrossRefGoogle Scholar
  94. Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97. doi: 10.1006/pmpp.1999.0213 CrossRefGoogle Scholar
  95. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448. doi: 10.1016/j.pbi.2008.05.005 PubMedCrossRefGoogle Scholar
  96. Walters D, Avrova A, Bingham I, Burnett F, Fountaine J, Havis N, Hoad S, Hughes G, Looseley M, Oxley SP, Renwick A, Topp CE, Newton A (2012) Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133(1):33–73. doi: 10.1007/s10658-012-9948-x CrossRefGoogle Scholar
  97. Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64(5):1263–1280. doi: 10.1093/jxb/ert026 PubMedCrossRefGoogle Scholar
  98. Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep 27(1):125–135PubMedCrossRefGoogle Scholar
  99. West J, Kharbanda P, Barbetti M, Fitt BD (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50(1):10–27CrossRefGoogle Scholar
  100. Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC (2015) Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mole Plant Pathol 16(6):616–622. doi: 10.1111/mpp.12216 CrossRefGoogle Scholar
  101. Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56(419):2527–2538. doi: 10.1093/jxb/eri246 PubMedCrossRefGoogle Scholar
  102. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell Online 16(5):1132–1142CrossRefGoogle Scholar
  103. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094PubMedCrossRefGoogle Scholar
  104. Yang SY, Park MR, Kim IS, Kim YC, Yang JW, Ryu CM (2011) 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco. Eur J Plant Pathol 129(3):371–378CrossRefGoogle Scholar
  105. Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51(2):167–174PubMedCrossRefGoogle Scholar
  106. Zhou J, Sun A, Xing D (2013) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64(11):3261–3272PubMedCrossRefGoogle Scholar
  107. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12(4):414–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hatem Boubakri
    • 1
    Email author
  • Mahmoud Gargouri
    • 2
    • 3
  • Ahmed Mliki
    • 3
  • Faiçal Brini
    • 4
  • Julie Chong
    • 5
  • Moez Jbara
    • 1
  1. 1.Laboratory of LeguminousCentre of Biotechnology of Borj-CédriaHammam-LifTunisia
  2. 2.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  3. 3.Laboratory of Plant Molecular PhysiologyCentre of Biotechnology of Borj-CédriaHammam-LifTunisia
  4. 4.Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
  5. 5.Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991)Université de Haute AlsaceColmarFrance

Personalised recommendations