Advertisement

Planta

, Volume 243, Issue 5, pp 1083–1095 | Cite as

Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes

  • Shu-Fen Li
  • Guo-Jun Zhang
  • Jin-Hong Yuan
  • Chuan-Liang Deng
  • Wu-Jun GaoEmail author
Review

Abstract

Main conclusion

The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution.

Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

Keywords

Dioecious plant Heterochromatization Recombination suppression Repetitive elements Sex chromosome evolution Transposable elements 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science foundation of China (31300202, 30970211 and 31470334). We are grateful to Dr. Yongfang Li (Department of Biochemistry and Molecular Biology, Oklahoma State University) for her reviewing of this manuscript and constructive comments.

References

  1. Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646–650PubMedCrossRefGoogle Scholar
  2. Akiyama K, Katakami H, Takata R (2007) Mobilization of a retrotransposon in 5-azacytidine-treated fungus Fusarium oxysporum. Plant Biotechnol 24:345–348CrossRefGoogle Scholar
  3. Armstrong SJ, Filatov DA (2008) A cytogenetic view of sex chromosome evolution in plants. Cytogenet Genome Res 120:241–246PubMedCrossRefGoogle Scholar
  4. Arnaud P, Goubely C, Pélissier T, Deragon JM (2000) SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol Cell Biol 20:3434–3441PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachtrog D (2005) Sex chromosome evolution: molecular aspects of Y chromosome degeneration in Drosophila. Genome Res 15:1393–1401PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bachtrog D, Hom E, Wong KM, Maside X, de Jong P (2008) Genomic degradation of a young Y chromosome in Drosophila Miranda. Genome Biol 9:R30PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bellott DW, Skaletsky H, Pyntikova T, Mardis ER, Graves T, Kremitzki C, Brown LG, Rozen S, Warren WC, Wilson RK, Page DC (2010) Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466:612–616PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102PubMedCrossRefGoogle Scholar
  9. Bergero R, Charlesworth D (2011) Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr Biol 21:1470–1474PubMedCrossRefGoogle Scholar
  10. Bergero R, Charlesworth D, Filatov D, Moore R (2008a) Defining regions and rearrangements of the Silene latifolia Y chromosome. Genetics 178:2045–2053PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bergero R, Forrest A, Charlesworth D (2008b) Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics 178:1085–1092PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergero R, Qiu S, Charlesworth D (2015) Gene loss from a plant sex chromosome system. Curr Biol 25:1234–1240PubMedCrossRefGoogle Scholar
  13. Blavet N, Blavet H, Muyle A, Käfer J, Cegan R, Deschamps C, Zemp N, Mousset S, Aubourg S, Bergero R, Charlesworth D, Hobza R, Widmer A, Marais GAB (2015) Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia. BMC Genom 16:546CrossRefGoogle Scholar
  14. Böhne A, Zhou QC, Darras A, Schmidt C, Schartl M, Galiana-Arnoux D, Volff JN (2012) Zisupton-a novel superfamily of DNA transposable elements recently active in fish. Mol Biol Evol 29:631–645PubMedCrossRefGoogle Scholar
  15. Bůzek J, Koutníková H, Houben A, Ríha K, Janousek B, Siroký J, Grant S, Vyskot B (1997) Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res 5:57–65PubMedCrossRefGoogle Scholar
  16. Cegan R, Marais GAB, Kubekova H, Blavet N, Widmer A, Vyskot B, Doležel J, Šafář J, Hobza R (2010) Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biol 10:180PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequence in Silene latifolia with respect to their distribution on sex chromosome. Chromosome Res 16:961–976PubMedCrossRefGoogle Scholar
  18. Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420PubMedCrossRefGoogle Scholar
  19. Charlesworth D (2015) Plant contributions to our understanding of sex chromosome evolution. New Phytol 208:52–65PubMedCrossRefGoogle Scholar
  20. Charlesworth D, Guttman DS (1999) The evolution of dioecy and plant sex chromosome systems. In: Ainsworth C (ed) Sex determination in plants. Bios Scientific Publisher press, Oxford, pp 25–49Google Scholar
  21. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220PubMedCrossRefGoogle Scholar
  22. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128PubMedCrossRefGoogle Scholar
  23. Chinnusamy V, Dalal M, Zhu JK (2013) Epigenetic regulation of abiotic stress responses in plants. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress, 2nd edn. Wiley, Hoboken, pp 203–229Google Scholar
  24. Cioffi MB, Kejnovský E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LA (2012) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol Cytogenet 5:28CrossRefGoogle Scholar
  25. Cioffi MB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A, Yano CF, Supiwong W, Chaveerach A (2015) Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). PLoS One 10:e0130199PubMedCentralCrossRefGoogle Scholar
  26. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  27. Contreras B, Vives C, Castells R, Casacuberta JM (2015) The impact of transposable elements in the evolution of plant genomes: from selfish elements to key players. In: Pontarotti P (ed) Evolutionary biology: Biodiversification from genotype to phenotype. Switzerland, pp 93–105Google Scholar
  28. Cui X, Cao X (2014) Epigenetic regulation and functional exaptation of transposable elements in higher plants. Curr Opin Plant Biol 21:83–88PubMedCrossRefGoogle Scholar
  29. Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI (2011) Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet Genome Res 134:213–219PubMedCrossRefGoogle Scholar
  30. Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS One 9:e85118PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eichten SR, Dllis NA, Makarevitch I, Yeh CT, Gent JI, Guo L, McGinnis KM, Zhang X, Schnable PS, Vaughn MW, Dawe RK, Springer NM (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8:e1003127PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ellison CE, Bachtrog D (2013) Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342:846–850PubMedPubMedCentralCrossRefGoogle Scholar
  33. Erlandsson R, Wilson JF, Paabo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 17:804–812PubMedCrossRefGoogle Scholar
  34. Faber-Hammond JJ, Phillips RB, Brown KH (2015) Comparative analysis of the shared sex-determination region (SDR) among salmonid fishes. Genome Biol Evol 7:1972–1987PubMedPubMedCentralCrossRefGoogle Scholar
  35. Feng W, Michaels SD (2015) Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. Annu Rev Genet 49:439–459PubMedCrossRefGoogle Scholar
  36. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK (2013) CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 23:628–637PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nuñez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24:3243–3256PubMedCrossRefGoogle Scholar
  38. Grabowska-Joachimiak A, Mosiolek M, Lech A, Góralski G (2011) C-banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicas Siebold & Zucc. Cytogenet Genome Res 132:203–211PubMedCrossRefGoogle Scholar
  39. Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914PubMedCrossRefGoogle Scholar
  40. Gschwend A, Yu Q, Tong E, Zeng F, Han J, VanBuren R, Aryal R, Charlesworth D, Moore PH, Paterson AH, Ming R (2012) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci USA 109:13716–13721PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382PubMedCrossRefGoogle Scholar
  42. Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Genet Genomics 278:633–638PubMedCrossRefGoogle Scholar
  43. Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky B (2015) Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res 23:561–570PubMedCrossRefGoogle Scholar
  44. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ishizaki K, Shimizu-Ueda Y, Okada S, Yamamoto M, Fujisawa M, Tamato KT, Fukuzawa H, Ohyama K (2002) Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha. Nucleic Acids Res 30:4675–4681PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jablonka E (2004) The evolution of the peculiarities of mammalian sex chromosomes: an epigenetic view. BioEssays 26:1327–1332PubMedCrossRefGoogle Scholar
  47. Jamsari A, Nitz I, Reamon-Büttner SM, Jung C (2004) BAC-derived diagnostic markers for sex determination in Asparagus. Theor Appl Genet 108:1140–1146PubMedCrossRefGoogle Scholar
  48. Janoušek B, Široký J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant Melandrium album. Mol Gen Genet 250:483–490PubMedCrossRefGoogle Scholar
  49. Kawashima T, Berger F (2014) Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15:613–624PubMedCrossRefGoogle Scholar
  50. Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B (2006) Retand: a novel family of gypsy-like retrotransposon harboring an amplified tandem repeat. Mol Genet Genomics 276:254–263PubMedCrossRefGoogle Scholar
  51. Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541PubMedCrossRefGoogle Scholar
  52. Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubát Z, Kovařík J, Jamilena M, Vyskot B (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8:e45519PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kralova T, Cegan R, Kubat Z, Vrana J, Vyskot B, Vogel I, Kejnovsky E, Hobza R (2014) Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet Genome Res 143:87–95PubMedCrossRefGoogle Scholar
  54. Kubat Z, Hobza R, Vyskot B (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350–356PubMedCrossRefGoogle Scholar
  55. Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, Hobza R, Vyskot B, Kejnovsky E (2014) Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol 202:662–678PubMedCrossRefGoogle Scholar
  56. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, Abe K, Ogura A, Wilhelm D, Koopman P, Nozaki M, Kanai Y, Shinkai Y, Tachibana M (2013) Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341:1106–1109PubMedCrossRefGoogle Scholar
  57. Li SF, Gao WJ, Zhao XP, Dong TY, Deng CL, Lu LD (2014) Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data. PLoS One 9:e97189PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li SF, Zhang GJ, Yuan JH, Deng CL, Lu LD, Gao WJ (2015a) Effect of 5-azaC on the growth, flowering time and sexual phenotype in spinach. Russ J Plant Physiol 62:670–675CrossRefGoogle Scholar
  59. Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM (2015b) The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 16:79PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66PubMedCrossRefGoogle Scholar
  61. Lisch D, Bennetzen JL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14:156–161PubMedCrossRefGoogle Scholar
  62. Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352PubMedCrossRefGoogle Scholar
  63. Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436PubMedPubMedCentralCrossRefGoogle Scholar
  64. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408PubMedCrossRefGoogle Scholar
  65. Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, Hobza R, Widmer A, Charlesworth D (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 18:545–549PubMedCrossRefGoogle Scholar
  66. Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M (2009) Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249–259PubMedCrossRefGoogle Scholar
  67. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138PubMedCrossRefGoogle Scholar
  68. Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JAM, Matsuda Y, Ezaz T (2015) Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosome in Sauropsida. Chromosoma Adv. doi: 10.1007/s00412-015-0531-z Google Scholar
  69. Matsunaga S, Yagisawa F, Yamamoto M, Uchida W, Nakao S, Kawano S (2002) LTR retrotransposons in the dioecious plant Silene latifolia. Genome 45:745–751PubMedCrossRefGoogle Scholar
  70. McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Year Book 47:155–169Google Scholar
  71. Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12:164–171PubMedPubMedCentralCrossRefGoogle Scholar
  72. Menon DU, Coarfa C, Xiao W, Gunaratne PH, Meller VH (2014) siRNAs from an X-linked satellite repeat promote X chromosome recognition in Drosophila melanogaster. Proc Natl Acad Sci USA 111:16460–16465PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ming R, Hou SB, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514PubMedCrossRefGoogle Scholar
  75. Morales ME, Servant G, Ade C, Roy-Engel AM (2015) Altering genomic integrity: heavy metal exposure promotes transposable element-mediated damage. Biol Trace Elem Res 16:24–33CrossRefGoogle Scholar
  76. Na JK, Wang J, Ming R (2014) Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genom 15:335CrossRefGoogle Scholar
  77. Navajas-Pérez R, de la Herrán R, González GL, Jamilena M, Lozano R, Rejón CR, Rejón MR, Garrido-Ramos MA (2005) The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and plastidial sequence data. Mol Biol Evol 22:1929–1939PubMedCrossRefGoogle Scholar
  78. Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Negrutiu I, Charlesworth D, Monéger F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ohno S (1967) Sex Chromosomes and Sex linked Genes. New YorkGoogle Scholar
  80. Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Shimizu-Ueda Kono K, Hanajiri T, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K (2001) The Y chromosome in the liverwort Marchantia polymorpha was accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459PubMedPubMedCentralCrossRefGoogle Scholar
  81. Oyama RK, Silber MV, Renner SS (2010) A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae). BMC Res Notes 3:166PubMedPubMedCentralCrossRefGoogle Scholar
  82. Piferrer F (2013) Epigenetics of sex determination and gonadogenesis. Dev Dyn 242:360–370PubMedCrossRefGoogle Scholar
  83. Pontes O, Costa-Nunes P, Vithayathil P, Pikaard CS (2009) RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant 2:700–710PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rejón CR, Jamilena M, Ramos MG, Parker JS, Rejón MR (1994) Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72:209–215CrossRefGoogle Scholar
  85. Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596PubMedCrossRefGoogle Scholar
  86. Repping S, Daalen SKMv, Brown LG, Korver CM, Lange J, Marszalek JD, Pyntikova T, van der Veen F, Skaletsky H, Rozen S (2006) High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 38:463–467PubMedCrossRefGoogle Scholar
  87. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732PubMedCrossRefGoogle Scholar
  88. Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa L. Genome 48:931–936PubMedCrossRefGoogle Scholar
  89. Schaack S, Pritham EJ, Wolf A, Lynch M (2010) DNA transposon dynamics in population of Daphnia pulex with and without sex. Proc Biol Sci 277:2381–2387PubMedPubMedCentralCrossRefGoogle Scholar
  90. Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4: e09343Google Scholar
  91. Sentmanat MF, Elgin SCR (2012) Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci USA 109:14104–14109PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270PubMedCrossRefGoogle Scholar
  93. Shibata F, Hizume M, Kuroki Y (2000) Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8:229–236PubMedCrossRefGoogle Scholar
  94. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837PubMedCrossRefGoogle Scholar
  95. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285PubMedCrossRefGoogle Scholar
  96. Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472PubMedPubMedCentralCrossRefGoogle Scholar
  97. Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139:107–118PubMedCrossRefGoogle Scholar
  99. Steflova P, Tokan V, Vogel I, Lexa M, Macas J, Novak P, Hobza R, Vyskot B, Kejnovsky E (2013) Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol 5:769–782PubMedPubMedCentralCrossRefGoogle Scholar
  100. Steflova P, Hobza R, Vyskot B, Kejnovsky E (2014) Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet Genome Res 142:59–65PubMedCrossRefGoogle Scholar
  101. Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595PubMedPubMedCentralCrossRefGoogle Scholar
  102. Steinemann S, Steinemann M (2005a) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143PubMedCrossRefGoogle Scholar
  103. Steinemann S, Steinemann M (2005b) Y chromosomes: born to be destroyed. BioEssays 27:1076–1083PubMedCrossRefGoogle Scholar
  104. Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y (2007) Rice transposable elements are characterized by various methylation environments in the genome. BMC Genom 8:469CrossRefGoogle Scholar
  105. Telgmann-Rauber A, Jamsari A, Kinney MS, Pires JC, Jung C (2007) Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol Genet Genomics 278:221–234PubMedCrossRefGoogle Scholar
  106. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2012) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229CrossRefGoogle Scholar
  107. Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL, Jackson SA, Gaut BS, Ma J (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230PubMedPubMedCentralCrossRefGoogle Scholar
  108. Toups M, Veltsos P, Pannell JR (2015) Plant sex chromosomes: lost genes with little compensation. Curr Biol 25:R427–R430PubMedCrossRefGoogle Scholar
  109. VanBuren R, Ming R (2013a) Dynamic transposable element accumulation in the nascent sex chromosomes of papaya. Mob Genet Elements 3:e23462PubMedPubMedCentralCrossRefGoogle Scholar
  110. VanBuren R, Ming R (2013b) Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol Genet Genomics 288:277–284PubMedCrossRefGoogle Scholar
  111. VanBuren R, Zeng F, Chen C et al (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vyskot B (2005) The role of DNA methylation in plant reproductive development. In: Ainsworth CC (ed) Sex determination in plants. Oxford, UK, pp 101–121Google Scholar
  113. Vyskot B, Hobza R (2015) The genomics of plant sex chromosomes. Plant Sci 236:126–135PubMedCrossRefGoogle Scholar
  114. Wang JP, Na JK, Yu QY, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109:13710–13715PubMedPubMedCentralCrossRefGoogle Scholar
  115. Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281PubMedCrossRefGoogle Scholar
  116. Wilkinson MF (2015) Evidence that DNA methylation engenders dynamic gene regulation. Proc Natl Acad Sci USA 112:E2116PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wollmann H, Berger F (2012) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol 15:63–69PubMedCrossRefGoogle Scholar
  118. Xuan YH, Piao HL, Je BI, Park SJ, Park SH, Huang J, Zhang JB, Peterson T, Han C (2011) Transposon Ac/Ds-induced chromosomal rearrangements at the rice OsRLG5 locus. Nucleic Acids Res 39:e149PubMedPubMedCentralCrossRefGoogle Scholar
  119. Matzke MA, Kanno T, Matzke AJM (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:91–925CrossRefGoogle Scholar
  120. Yamato KT, Ishizaki K, Fujisawa M et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yano CF, Bertollo LAC, Molina WF, Liehr T, Cioffi MB (2014) Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae). Comp Cytogenet 8:139–151PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yu QY, Hou SB, Hobza R, Feltus FA, Wang X, Jin WW, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang JM, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185PubMedCrossRefGoogle Scholar
  123. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zeng F, Cheng B (2014) Transposable element insertion and epigenetic modification cause the multiallelic variation in the expression of FAE1 in Sinapis alba. Plant Cell 26:2648–2659PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492PubMedCrossRefGoogle Scholar
  126. Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhang W, Wang X, Yu QY, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, Bachtrog D (2013) The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol 11:e1001711PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1332–1340CrossRefGoogle Scholar
  130. Zhu Y, Dai J, Fuerst PG, Voytas DF (2003) Controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci USA 100:5891–5895PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zluvova J, Georgiev S, Janousek B, Charlesworth D, Vyskot B, Negrutiu I (2007) Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics 177:375–386PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shu-Fen Li
    • 1
  • Guo-Jun Zhang
    • 2
  • Jin-Hong Yuan
    • 1
  • Chuan-Liang Deng
    • 1
  • Wu-Jun Gao
    • 1
    Email author
  1. 1.College of Life SciencesHenan Normal UniversityXinxiangChina
  2. 2.School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina

Personalised recommendations