, Volume 243, Issue 3, pp 699–717 | Cite as

Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana

  • Amr. R. A. KatayaEmail author
  • Edit Schei
  • Cathrine LilloEmail author
Original Article


Main conclusion

This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1)


Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser–Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.


Peroxisomes POL like phosphatases (PLL2, PLL3) Protein phosphatase 2C (PP2C) Protein phosphatases Peroxisome targeting signal type 1 (PTS1) Purple acid phosphatase 7 Signaling β-Oxidation 



Cyan fluorescent protein


2,4-Dichlorophenoxyacetic acid


Enhanced yellow fluorescent protein


Glyoxysomal malate dehydrogenase


Indole-3-butyric acid


Membrane PTS


Orange fluorescent protein


Proto-methyl-jasmonic acid


Purple acid phosphatase




POL Like phosphatase


Peroxisomal membrane protein




Phospho-protein phosphatases


Protein phosphatase 2A


Peroxisomal targeting domain


Peroxisome targeting signal type 1


Peroxisome targeting signal type 2


Shewanella-like phosphatase 1


PP2A phosphatase-associated protein of 46 kDa


Tap42-interacting protein



The Norwegian research council (grant no. 213853/F20 to CL) supported this work. The authors declare no competing financial interests.

Supplementary material

425_2015_2439_MOESM1_ESM.pdf (621 kb)
Supplementary material 1 (PDF 621 kb)
425_2015_2439_MOESM2_ESM.pdf (295 kb)
Supplementary material 2 (PDF 294 kb)
425_2015_2439_MOESM3_ESM.pdf (605 kb)
Supplementary material 3 (PDF 605 kb)
425_2015_2439_MOESM4_ESM.pdf (320 kb)
Supplementary material 4 (PDF 319 kb)
425_2015_2439_MOESM5_ESM.pdf (1011 kb)
Supplementary material 5 (PDF 1010 kb)
425_2015_2439_MOESM6_ESM.pdf (357 kb)
Supplementary material 6 (PDF 357 kb)
425_2015_2439_MOESM7_ESM.pdf (271 kb)
Supplementary material 7 (PDF 270 kb)


  1. Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209. doi: 10.1105/tpc.110.074005 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ahn CS, Ahn HK, Pai HS (2015) Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot 66:827–840. doi: 10.1093/jxb/eru438 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arai Y, Hayashi M, Nishimura M (2008a) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49:526–539. doi: 10.1093/pcp/pcn027 CrossRefPubMedGoogle Scholar
  4. Arai Y, Hayashi M, Nishimura M (2008b) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240. doi: 10.1105/tpc.108.062877 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214. doi: 10.1074/mcp.M600429-MCP200 CrossRefPubMedGoogle Scholar
  6. Bernhardt K, Wilkinson S, Weber AP, Linka N (2012) A peroxisomal carrier delivers NAD(+) and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J 69:1–13. doi: 10.1111/j.1365-313X.2011.04775.x CrossRefPubMedGoogle Scholar
  7. Cassin-Ross G, Hu J (2014) A simple assay to identify peroxisomal proteins involved in 12-oxo-phytodienoic acid metabolism. Plant Signal Behav 9:e29464. doi: 10.4161/psb.29464 PubMedCentralCrossRefGoogle Scholar
  8. Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540. doi: 10.1111/j.1365-313X.2010.04255.x CrossRefPubMedGoogle Scholar
  9. Dammann C, Ichida A, Hong BM, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848PubMedCentralCrossRefPubMedGoogle Scholar
  10. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357PubMedGoogle Scholar
  11. del Pozo JC, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J 19:579–589CrossRefPubMedGoogle Scholar
  12. Del Vecchio HA, Ying S, Park J, Knowles VL, Kanno S, Tanoi K, She YM, Plaxton WC (2014) The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. Plant J 80:569–581. doi: 10.1111/tpj.12663 CrossRefPubMedGoogle Scholar
  13. Engholm-Keller K, Larsen MR (2011) Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds—applications in acidic modification-specific proteomics. J Proteomics 75:317–328. doi: 10.1016/j.jprot.2011.07.024 CrossRefPubMedGoogle Scholar
  14. Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829. doi: 10.1104/pp.108.129999 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Frank J, Kaulfurst-Soboll H, Rips S, Koiwa H, von Schaewen A (2008) Comparative analyses of Arabidopsis complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a. Plant Physiol 148:1354–1367. doi: 10.1104/pp.108.127027 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696CrossRefPubMedGoogle Scholar
  17. Fukao Y, Hayashi M, Hara-Nishimura I, Nishimura M (2003) Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. Plant Cell Physiol 44:1002–1012CrossRefPubMedGoogle Scholar
  18. Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J 32:93–103CrossRefPubMedGoogle Scholar
  19. Gagne JM, Clark SE (2010) The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22:729–743. doi: 10.1105/tpc.109.068734 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gould SJ, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105:2923–2931CrossRefPubMedGoogle Scholar
  21. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021. doi: 10.1093/nar/gkm812 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH (2014) SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics 30:3356–3364. doi: 10.1093/bioinformatics/btu550 CrossRefPubMedGoogle Scholar
  23. Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285:6739–6749. doi: 10.1074/jbc.M109.058552 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kataya ARA (2011) Identification of peroxisome-targeted proteins implicated in plant innate immunity in Arabidopsis thaliana. PhD, Department of mathematics and Natural Science, Faculty of Science and Technology, University of Stavanger, Stavanger, NorwayGoogle Scholar
  25. Kataya AR, Heidari B, Hagen L, Kommedal R, Slupphaug G, Lillo C (2015a) Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal beta-oxidation. Plant Physiol 167:493–506. doi: 10.1104/pp.114.254409 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kataya AR, Heidari B, Lillo C (2015b) Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time–joint functions among B’eta subfamily members. Plant Signal Behav 10:e1026024. doi: 10.1080/15592324.2015.1026024 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kataya AR, Schei E, Lillo C (2015c) MAP kinase phosphatase 1 harbors a novel PTS1 and is targeted to peroxisomes following stress treatments. J Plant Physiol 179:12–20. doi: 10.1016/j.jplph.2015.03.002 CrossRefPubMedGoogle Scholar
  28. Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123. doi:10.1199/tab.0123Google Scholar
  29. Kerk D, Templeton G, Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146:351–367. doi: 10.1104/pp.107.111393 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kim PK, Hettema EH (2015) Multiple pathways for protein transport to peroxisomes. J Mol Biol 427:1176–1190. doi: 10.1016/j.jmb.2015.02.005 CrossRefPubMedGoogle Scholar
  31. Kim DJ, Smith SM (1994) Expression of a single gene encoding microbody NAD-malate dehydrogenase during glyoxysome and peroxisome development in cucumber. Plant Mol Biol 26:1833–1841CrossRefPubMedGoogle Scholar
  32. Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 277:27772–27781. doi: 10.1074/jbc.M204183200 CrossRefPubMedGoogle Scholar
  33. Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H (2010) Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiol 152:854–865. doi: 10.1104/pp.109.147918 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Lillo C, Kataya AR, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ 37:2631–2648. doi: 10.1111/pce.12364 CrossRefPubMedGoogle Scholar
  35. Lingard MJ, Monroe-Augustus M, Bartel B (2009) Peroxisome-associated matrix protein degradation in Arabidopsis. Proc Natl Acad Sci USA 106:4561–4566. doi: 10.1073/pnas.0811329106 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572. doi: 10.1105/tpc.111.084095 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M et al (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183. doi: 10.1126/science.1119409 CrossRefPubMedGoogle Scholar
  38. Ma C, Reumann S (2008) Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. J Exp Bot 59:3767–3779. doi: 10.1093/jxb/ern221 CrossRefPubMedGoogle Scholar
  39. Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60. doi: 10.1104/pp.105.073841 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Mano S, Nishimura M (2005) Plant peroxisomes. Vitam Horm 72:111–154. doi: 10.1016/S0083-6729(05)72004-5 CrossRefPubMedGoogle Scholar
  41. Maselli GA, Slamovits CH, Bianchi JI, Vilarrasa-Blasi J, Cano-Delgado AI, Mora-Garcia S (2014) Revisiting the evolutionary history and roles of protein phosphatases with Kelch-like domains in plants. Plant Physiol 164:1527–1541. doi: 10.1104/pp.113.233627 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Matre P (2009) Protein phosphatase 2A and regulation of nitrate reductase in plants. PhD, Department of mathematics and Natural Science, Faculty of Science and Technology, University of Stavanger, Stavanger, NorwayGoogle Scholar
  43. Matre P, Meyer C, Lillo C (2009) Diversity in subcellular targeting of the PP2A B’eta subfamily members. Planta 230:935–945. doi: 10.1007/s00425-009-0998-z CrossRefPubMedGoogle Scholar
  44. Meyer T, Holscher C, Schwoppe C, von Schaewen A (2011) Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant J 66:745–758. doi: 10.1111/j.1365-313X.2011.04535.x CrossRefPubMedGoogle Scholar
  45. Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409. doi: 10.1042/BJ20081986 CrossRefPubMedGoogle Scholar
  46. Mullen RT, Trelease RN (2006) The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. Biochim Biophys Acta 1763:1655–1668. doi: 10.1016/j.bbamcr.2006.09.011 CrossRefPubMedGoogle Scholar
  47. Olczak M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases—genes, structures and biological function. Acta Biochim Pol 50:1245–1256PubMedGoogle Scholar
  48. Orth T, Reumann S, Zhang XC, Fan JL, Wenzel D, Quan S, Hu JP (2007) The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19:333–350. doi: 10.1105/tpc.106.045831 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Quan S, Yang PF, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li JY, Hu JP (2013) Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in beta- oxidation and development. Plant Physiol 163:1518–1538. doi: 10.1104/pp.113.223453 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670CrossRefPubMedGoogle Scholar
  51. Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783–800PubMedCentralCrossRefPubMedGoogle Scholar
  52. Reumann S, Lavanya Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193. doi: 10.1105/tpc.107.050989 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Reumann S, Quan S, Aung K, Yang PF et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143. doi: 10.1104/pp.109.137703 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a web Server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194. doi: 10.3389/fpls.2012.00194 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  56. Schenk G, Mitić N, Hanson GR, Comba P (2013) Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482. doi: 10.1016/j.ccr.2012.03.020 CrossRefGoogle Scholar
  57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  58. Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280:644–661. doi: 10.1111/j.1742-4658.2012.08579.x CrossRefPubMedGoogle Scholar
  59. Song S-K, Clark SE (2005) POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol 285:272–284. doi: 10.1016/j.ydbio.2005.06.020 CrossRefPubMedGoogle Scholar
  60. Sørhagen K, Laxa M, Peterhänsel C, Reumann S (2013) The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence. Plant Biol 15:723–736. doi: 10.1111/j.1438-8677.2012.00723.x CrossRefPubMedGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Theodoulou FL, Bernhardt K, Linka N, Baker A (2013) Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem J 451:345–352. doi: 10.1042/bj20130078 CrossRefPubMedGoogle Scholar
  63. Tian J, Liao H (2015) The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. Annu Plant Rev 48:265–287. doi: 10.1002/9781118958841.ch10 Google Scholar
  64. Titorenko VI, Rachubinski RA (1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18:2789–2803PubMedCentralCrossRefPubMedGoogle Scholar
  65. Titorenko VI, Ogrydziak DM, Rachubinski RA (1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17:5210–5226PubMedCentralCrossRefPubMedGoogle Scholar
  66. Tran HT, Hurley BA, Plaxton WC (2010a) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27. doi: 10.1016/j.plantsci.2010.04.005 CrossRefGoogle Scholar
  67. Tran HT, Qian W, Hurley BA, She YM, Wang D, Plaxton WC (2010b) Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ 33:1789–1803. doi: 10.1111/j.1365-3040.2010.02184.x CrossRefPubMedGoogle Scholar
  68. Uhrig RG, Moorhead GB (2011) Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties. Plant Physiol 157:1778–1792. doi: 10.1104/pp.111.182493 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Uhrig RG, Kerk D, Moorhead GB (2013a) Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. Plant Physiol 163:1829–1843. doi: 10.1104/pp.113.224378 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Uhrig RG, Labandera AM, Moorhead GB (2013b) Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci 18:505–513. doi: 10.1016/j.tplants.2013.05.004 CrossRefPubMedGoogle Scholar
  71. Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600. doi: 10.1104/pp.111.189514 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J Integr Plant Biol 56:299–314. doi: 10.1111/jipb.12184 CrossRefPubMedGoogle Scholar
  73. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. doi: 10.1371/journal.pone.0000718 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Wu G, Wang X, Li X, Kamiya Y, Otegui, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4:ra29. doi: 10.1126/scisignal.2001258 CrossRefPubMedGoogle Scholar
  75. Xue T et al (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genom 9:550. doi: 10.1186/1471-2164-9-550 CrossRefGoogle Scholar
  76. Yang Y-P, Randall DD, Trelease RN (1988) Phosphorylation of glyoxysomal malate synthase from castor oil seeds Ricinus communis L. FEBS Lett 234:275–279. doi: 10.1016/0014-5793(88)80097-8 CrossRefGoogle Scholar
  77. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. doi: 10.1038/nprot.2007.199 CrossRefPubMedGoogle Scholar
  78. Yu LP, Miller AK, Clark SE (2003) POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 13:179–188CrossRefPubMedGoogle Scholar
  79. Zhang XC, Hu JP (2010) The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division. Plant Cell 22:431–442. doi: 10.1105/tpc.109.071324 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi: 10.1104/pp.104.046367 PubMedCentralCrossRefPubMedGoogle Scholar
  81. Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta -oxidation. Plant Physiol 127:1266–1278. doi: 10.1104/pp.010550 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Science and Technology, Centre for Organelle ResearchUniversity of StavangerStavangerNorway

Personalised recommendations