Advertisement

Planta

, Volume 243, Issue 3, pp 675–685 | Cite as

Towards the development of an oral vaccine against porcine cysticercosis: expression of the protective HP6/TSOL18 antigen in transgenic carrots cells

  • Elizabeth Monreal-Escalante
  • Dania O. Govea-Alonso
  • Marisela Hernández
  • Jacquelynne Cervantes
  • Jorge A. Salazar-González
  • Andrea Romero-Maldonado
  • Gabriela Rosas
  • Teresa Garate
  • Gladis Fragoso
  • Edda Sciutto
  • Sergio Rosales-Mendoza
Original Article

Abstract

Main conclusion

The Taenia solium HP6/TSOL18 antigen was produced in carrot cells, yielding an immunogenic protein that induced significant protection in an experimental murine model against T. crassiceps cysticercosis when orally administered. This result supports the potential of HP6/TSOL18-carrot as a low-cost anti-cysticercosis vaccine candidate.

Cysticercosis is a zoonosis caused by Taenia solium that can be prevented by interrupting the parasite life cycle through pig vaccination. Several injectable vaccine candidates have been reported, but the logistic difficulties and costs for its application limited its use in nationwide control programs. Oral plant-based vaccines can deal with this limitation, because of their easy administration and low cost. A stable expression of the HP6/TSOL18 anti-T. solium cysticercosis protective antigen in carrot calli transformed with an optimized transgene is herein reported. An antigen accumulation up to 14 µg g−1 of dry-weight biomass was achieved in the generated carrot lines. Mouse immunization with one of the transformed calli induced both specific IgG and IgA anti-HP6/TSOL18 antibodies. A statistically significant reduction in the expected number of T. crassiceps cysticerci was observed in mice orally immunized with carrot-made HP6/TSOL18, in a similar extent to that obtained by subcutaneous immunization with recombinant HP6/TSOL18 protein. In this study, a new oral plant-made version of the HP6/TSOL18 anti-cysticercosis vaccine is reported. The vaccine candidate should be further tested against porcine cysticercosis.

Keywords

Cysticercosis Delivery system HP6/TSOL18 Oral vaccine Plant-based vaccine Taenia Vaccination 

Abbreviations

ERT

Enzyme replacement therapy

GST-HP6/TSOL18

Glutathione S-transferase-HP6/TSOL18 fusion protein

NC

Neurocysticercosis

CNS

Central nervous system

Notes

Acknowledgments

The authors acknowledge Georgina Diaz and Daniel Garzón for their technical support, and Juan Francisco Rodriguez for the language edition of this manuscript. This research was partially supported by the CONACyT (201448, 152793), DGAPA (IG-200414), and The Programa de Investigación para el Desarrollo y la Optimización de Vacunas, Adyuvantes y Métodos Diagnósticos del Instituto de Investigaciones Biomédicas, UNAM.

References

  1. Assana E, Kyngdon CT, Gauci CG, Geerts S, Dorny P, De Deken R (2010) Elimination of Taenia solium transmission to pigs in a field trial of the HP6/TSOL18 vaccine in Cameroon. Int J Parasitol 40:515–519PubMedCentralCrossRefPubMedGoogle Scholar
  2. Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman A, Zimran A, Galun E (2009) A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS One 4:e4792PubMedCentralCrossRefPubMedGoogle Scholar
  3. Batson A (1998) Win–win interactions between the public and private sectors. Nat Med 4(5 Suppl):487–491CrossRefPubMedGoogle Scholar
  4. Benitez L, Garate T, Harrison LJ, Kirkham P, Brookes SM, Parkhouse RM (1996) Cloning and sequencing of the gene encoding the principal 18-kDa a secreted antigen of activated oncospheres of Taenia saginata. Mol Biochem Parasitol 78:265–268CrossRefPubMedGoogle Scholar
  5. Berman S, Giffin RB (2004) Global perspectives on vaccine financing. Expert Rev Vaccines 3:557–562CrossRefPubMedGoogle Scholar
  6. Betancourt MA, de Aluja AS, Sciutto E, Hernández M, Bobes RJ, Rosas G, Hernández B, Fragoso G, Hallal-Calleros C, Aguilar L, Flores-Peréz I (2012) Effective protection induced by three different versions of the porcine S3Pvac anticysticercosis vaccine against rabbit experimental Taenia pisiformis cysticercosis. Vaccine 30:2760–2767CrossRefPubMedGoogle Scholar
  7. Cai X, Yuan G, Zheng Y, Luo X, Zhang S, Ding J, Jing Z, Lu C (2008) Effective production and purification of the glycosylated TSOL18 antigen, which is protective against pig cysticercosis. Infect Immun 76:767–770PubMedCentralCrossRefPubMedGoogle Scholar
  8. Dabral N, Moreno-Lafont M, Sriranganathan N, Vemulapalli R (2014) Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308. PLoS One 9(9):e107180PubMedCentralCrossRefPubMedGoogle Scholar
  9. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079CrossRefPubMedGoogle Scholar
  10. De Aluja AS (2008) Cysticercosis in the pig. Curr Trop Med Chem 8:368–374CrossRefGoogle Scholar
  11. De Aluja AS, Suárez-Marín R, Sciutto-Conde E, Morales-Soto J, Martínez-Maya JJ, Villalobos N (2014) Evaluation of the impact of a control program against taeniasis-cysticercosis (Taenia solium). Salud Publica Mex 56:259–265PubMedGoogle Scholar
  12. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  13. Flisser A, Gauci CG, Zoli A, Martinez-Ocana J, Garza-Rodriguez A, Dominguez-Alpizar JL, Maravilla P, Rodriguez-Canul R, Ávila G, Aguilar-Vega L, Kyngdon C, Geerts S, Lightowlers MW (2004) Induction of protection against porcine cysticercosis by vaccination with recombinant oncosphere antigens. Infect Immun 72:5292–5297PubMedCentralCrossRefPubMedGoogle Scholar
  14. Fragoso G, Esquivel-Guadarrama F, Santana MA, Bobes RJ, Hernández B, Cervantes J, Segura R, Goldbaum FA, Sciutto E, Rosas G (2011) Heterologous prime-boost oral immunization with GK1 peptide from Taenia crassiceps cysticerci induces protective immunity. Clin Vaccine Immunol 18:1067–1076PubMedCentralCrossRefPubMedGoogle Scholar
  15. Gandhi G, Lydonb P, Cornejoc S, Brenzel L, Wrobel S, Chang H (2013) Projections of costs, financing, and additional resource requirements for low- and lower middle-income country immunization programs over the decade, 2011–2020. Vaccine 31:137–148CrossRefGoogle Scholar
  16. Garcia HH, Del Brutto OH, Cysticercosis Working Group in Peru (2005) Neurocysticercosis: updated concepts about an old disease. Lancet Neurol 4:653–661CrossRefPubMedGoogle Scholar
  17. Gauci CG, Flisser A, Lightowlers MW (1998) Taenia solium oncosphere protein homologous to host-protective Taenia ovis and Taenia saginata 18 kDa antigens. Int J Parasitol 28:757–760CrossRefPubMedGoogle Scholar
  18. Gecchele E, Merlin M, Brozzetti A, Falorni A, Pezzotti M, Avesani L (2015) A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems. J Vis Exp 97:e52459. doi: 10.3791/52459 Google Scholar
  19. Gonzalez AE, Gauci CG, Barber D, Gilman RH, Tsang VC, Garcia HH, Verastegui M, Lightowlers MW (2005) Vaccination of pigs to control human neurocysticercosis. Am J Trop Med Hyg 72:837–839PubMedGoogle Scholar
  20. Harrison GB, Heath DD, Dempster RP, Gauci C, Newton SE, Cameron WG, Robinson CM, Lawrence SB, Lightowlers MW, Rickard MD (1996) Identification and cDNA cloning of two novel low molecular weight host-protective antigens from Taenia ovis oncospheres. Int J Parasitol 26:195–204CrossRefPubMedGoogle Scholar
  21. Hernández M, Cabrera-Ponce JL, Fragoso G, López-Casillas F, Guevara-García A, Rosas G, León-Ramírez C, Juárez P, Sánchez-García G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260CrossRefPubMedGoogle Scholar
  22. Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E (2014) Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 13:1523–1536CrossRefPubMedGoogle Scholar
  23. Huerta M, De Aluja AS, Fragoso G, Toledo A, Villalobos N, Hernández M, Gevorkian G, Acero G, Diaz A, Alvarez I, Avila R, Beltran C, Garcia G, Martinez JJ, Larralde C, Sciutto E (2001) Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico. Vaccine 20:262–266CrossRefPubMedGoogle Scholar
  24. Jayashi CM, Gonzalez AE, Castillo Neyra R, Kyngdon CT, Gauci CG, Lightowlers MW (2012) Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium. Vaccine 30:7475–7480CrossRefPubMedGoogle Scholar
  25. Kim SI, Veena JH, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791CrossRefPubMedGoogle Scholar
  26. Larralde C, Sciutto E (2006) El control de la Taenia solium en México quinientos años después de su llegada al Nuevo Mundo. Cisticercosis, guía para profesionales de la salud. Secretaría de Salud, Fundación Mexicana para la Salud, Instituto Nacional de Salud Pública, Fondo de Cultura Económica 7:182–237. ISBN 968-16- 8138-XGoogle Scholar
  27. Lightowlers MW (2006) Cestode vaccines: origins, current status and future prospects. Parasitology 133:27–42CrossRefGoogle Scholar
  28. Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.) derived measles virus hemagglutinin. Plant Mol Biol 51:459–469CrossRefPubMedGoogle Scholar
  29. Mojica-Henshaw MP, Francisco AD, De Guzman F, Tigno XT (2003) Possible immunomodulatory actions of Carica papaya seed extract. Clin Hemorheol Microcirc 29:219–229PubMedGoogle Scholar
  30. Molina A, Veramendi J, Hervás-Stubbs S (2005) Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology 342:266–275CrossRefPubMedGoogle Scholar
  31. Molinari JL, Soto R, Tato P, Rodriguez D, Retana A, Sepulveda J, Palet A (1993) Immunization against porcine cysticercosis in an endemic area in Mexico: a field and laboratory study. Am J Trop Med Hyg 49:502–512PubMedGoogle Scholar
  32. Molinari JL, Rodriguez D, Tato P, Soto R, Arechavaleta F, Solano S (1997) Field trial for reducing porcine Taenia solium cysticercosis in Mexico by systematic vaccination of pigs. Vet Parasitol 69:55–63CrossRefPubMedGoogle Scholar
  33. Morales J, Martínez JJ, Manoutcharian K, Hernández M, Fleury A, Gevorkian G, Acero G, Blancas A, Toledo A, Cervantes J, Maza V, Quet F, Bonnabau H, De Aluja AS, Fragoso G, Larralde C, Sciutto E (2008) Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis. Vaccine 26:2899–2905CrossRefPubMedGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479CrossRefGoogle Scholar
  35. Parkhouse RM, Bonay P, González LM, Ferrer E, Gárate T, Aguilar CM, Cortez AMM, Harrison LJ (2008) TSOL18/HP6-Tsol, an immunogenic Taenia solium oncospheral adhesion protein and potential protective antigen. Parasitol Res 102:921–926CrossRefPubMedGoogle Scholar
  36. Rosales-Mendoza S, Salazar-González JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13:737–749CrossRefPubMedGoogle Scholar
  37. Rosales-Mendoza S, Tello-Olea MA (2015) Carrot cells: a pioneering platform for biopharmaceuticals production. Mol Biotechnol 57:219–232CrossRefPubMedGoogle Scholar
  38. Rosales-Mendoza S, Soria-Guerra RE, de Jesús Olivera-Flores MT, López-Revilla R, Argüello-Astorga GR, Jiménez-Bremont JF, García-de la Cruz RF, Loyola-Rodríguez JP, Alpuche-Solís AG (2007) Expression of Escherichia coli heat-labile enterotoxin b subunit (LTB) in carrot (Daucus carota L.). Plant Cell Rep 26:969–976CrossRefPubMedGoogle Scholar
  39. Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 1:79–84Google Scholar
  40. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Han Y, Alpuche-Solís AG, Korban SS (2011) Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice. J Plant Physiol 168:174–180CrossRefPubMedGoogle Scholar
  41. Rosas G, Cruz-Revilla C, Fragoso G, López-Casillas F, Pérez A, Bonilla MA, Rosales R, Sciutto E (1998) Taenia crassiceps cysticercosis: humoral immune response and protection elicited by DNA immunization. J Parasitol 84:516–523CrossRefPubMedGoogle Scholar
  42. Sciutto E, Morales J, Martinez JJ, Toledo A, Villalobos MN, Cruz-Revilla C, Meneses G, Hernández M, Diaz A, Rodarte LF, Acero G, Gevorkian G, Manoutcharian K, Paniagua J, Fragoso G, Fleury A, Larralde R, De Aluja AS, Larralde C (2007) Further evaluation of the synthetic peptide vaccine S3Pvac against Taenia solium cysticercosis in pigs in an endemic town of Mexico. Parasitology 134:129–133CrossRefPubMedGoogle Scholar
  43. Sciutto E, Fragoso G, de Aluja AS, Hernández M, Rosas G, Larralde C (2008) Vaccines against cysticercosis. Curr Top Med Chem 8:415–423CrossRefPubMedGoogle Scholar
  44. Sciutto E, Fragoso G, Hernández M, Rosas G, Martinez JJ, Fleury A, Cervantes J, Aluja A, Larralde C (2013) Development of the S3pvac vaccine against murine Taenia crassiceps cysticercosis: a historical review. J Parasitol 99:693–702CrossRefPubMedGoogle Scholar
  45. Streatfield SJ, Howard JA (2003) Plant production systems for vaccines. Expert Rev Vaccines 2:763–775CrossRefPubMedGoogle Scholar
  46. Toledo A, Larralde C, Fragoso G, Gevorkian G, Manoutcharian K, Hernández M, Acero G, Rosas G, López-Casillas F, Garfias CK, Vázquez R, Terrazas I, Sciutto E (1999) Towards a Taenia solium cysticercosis vaccine: an epitope shared by Taenia crassiceps and Taenia solium protects mice against experimental cysticercosis. Infect Immun 67:2522–2530PubMedCentralPubMedGoogle Scholar
  47. Toledo A, Fragoso G, Rosas G, Hernández M, Gevorkian G, López-Casillas F, Hernández B, Acero G, Huerta M, Larralde C, Sciutto E (2001) Two epitopes shared by Taenia crassiceps and Taenia solium confer protection against murine T. crassiceps cysticercosis along with a prominent T1 response. Infect Immun 69:1766–1773PubMedCentralCrossRefPubMedGoogle Scholar
  48. Wang QM, Sun SH, Hu ZL, Wu D, Wang ZC (2003) Immune response and protection elicited by DNA immunization against Taenia cysticercosis. Vaccine 21:1672–1680CrossRefPubMedGoogle Scholar
  49. Webster DE, Smith SD, Pickering RJ, Strugnell RA, Dry IB, Wesselingh SL (2006) Measles virus hemagglutinin protein expressed in transgenic lettuce induces neutralising antibodies in mice following mucosal vaccination. Vaccine 24:3538–3544CrossRefPubMedGoogle Scholar
  50. Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep 22:289–300CrossRefGoogle Scholar
  51. Wu L, Diao Z, Dengm X, Gao J, Zhou Z, Liu Y, Wang Y (2005) DNA vaccine against Taenia solium cysticercosis expressed as a modified hepatitis B virus core particle containing three epitopes shared by Taenia crassiceps and Taenia solium. J Nanosci Nanotechnol 5:1204–1210CrossRefPubMedGoogle Scholar
  52. Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies, and beyond. Hum Vaccin 7:313–321CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elizabeth Monreal-Escalante
    • 1
  • Dania O. Govea-Alonso
    • 1
  • Marisela Hernández
    • 2
  • Jacquelynne Cervantes
    • 2
  • Jorge A. Salazar-González
    • 1
  • Andrea Romero-Maldonado
    • 1
  • Gabriela Rosas
    • 3
  • Teresa Garate
    • 4
  • Gladis Fragoso
    • 2
  • Edda Sciutto
    • 2
  • Sergio Rosales-Mendoza
    • 1
  1. 1.Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Dpto. Inmunología. Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Circuito Escolar, Ciudad UniversitariaMexicoMexico
  3. 3.Facultad de MedicinaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  4. 4.Dpto. de Parasitología, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain

Personalised recommendations