Planta

, Volume 242, Issue 6, pp 1439–1452 | Cite as

Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria

  • Amel Chamam
  • Florence Wisniewski-Dyé
  • Gilles Comte
  • Cédric Bertrand
  • Claire Prigent-Combaret
Original Article

Abstract

Main conclusion

Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives.

Plants’ growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant–bacteria biotic interactions.

Keywords

Commensalism Cooperation Flavonoids Hydroxycinnamic acid Parasitism Rice secondary metabolite profiling 

Abbreviations

HCA

Hydroxycinnamic acid

PCA

Principal component analysis

PGPR

Plant growth-promoting rhizobacteria

Supplementary material

425_2015_2382_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3310 kb)
425_2015_2382_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 27 kb)

References

  1. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefPubMedGoogle Scholar
  2. Bednarek P, Piœlewska-Bednarek M, Svatoš A, Schneider B, Doubsky J, Mansurova M et al (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106CrossRefPubMedGoogle Scholar
  3. Bennett RN, Wallsgrove RM (1994) Tansley Review No. 72. Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  4. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13CrossRefPubMedGoogle Scholar
  5. Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026CrossRefPubMedGoogle Scholar
  6. Besson E, Dellamonica G, Chopin J, Markham KR, Kim M, Koh H-S, Fukami H (1985) C-glycosylflavones from Oryza sativa. Phytochemistry 24:1061–1064CrossRefGoogle Scholar
  7. Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The C-glycosylation of flavonoids in cereals. J Biol Chem 284:17926–17934PubMedCentralCrossRefPubMedGoogle Scholar
  8. Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LCC, Valdameri G, Donatti L, Faoro H, Weiss VA, Chubatsu LS, Pedrosa FO, Souza EM (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 15:378PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the AzospirillumOryza sativa association. Phytochemistry 87:65–77CrossRefPubMedGoogle Scholar
  10. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101PubMedCentralCrossRefPubMedGoogle Scholar
  11. Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 105:4501–4506PubMedCentralCrossRefPubMedGoogle Scholar
  12. Couillerot O, Ramírez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in AzospirillumPseudomonasGlomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649CrossRefPubMedGoogle Scholar
  13. Dandie CE, Larrainzar E, Mark GL, O’Gara F, Morrissey JP (2005) Establishment of DsRed. T3_S4T as an improved autofluorescent marker for microbial ecology applications. Environ Microbiol 7:1818–1825CrossRefPubMedGoogle Scholar
  14. De Ascensao ARDCF, Dubery IA (2000) Panama disease: cell wall reinforcement in Banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology 90:1173–1180CrossRefPubMedGoogle Scholar
  15. Delgado NJ, Casler MD, Grau CR, Jung HG (2002) Reactions of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration to three fungal pathogens. Crop Sci 42:1824–1831CrossRefGoogle Scholar
  16. Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dye F (2014) Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol Ecol 87:543–555CrossRefPubMedGoogle Scholar
  17. Edreva AV, Velikova T, Tsonev T, Dagnon S, Gurel A, Atkas L, Gesheva E (2008) Stress protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78Google Scholar
  18. El Zemrany H, Czarnes S, Hallett P, Alamercery S, Bally R, Jocteur-Monrozier L (2007) Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 291:109–118CrossRefGoogle Scholar
  19. El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice. Biol Fertil Soils 28:377–381CrossRefGoogle Scholar
  20. Ferreres F, Andrade PB, Valentão P, Gil-Izquierdo A (2008) Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. J Chromatogr A 1182:56–64CrossRefPubMedGoogle Scholar
  21. Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instr. doi:10.1094/PHI-I-2008-0226-01 Google Scholar
  22. Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263CrossRefPubMedGoogle Scholar
  23. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846CrossRefPubMedGoogle Scholar
  24. Jaiswal R, Patras MA, Eravuchira PJ, Kuhnert N (2010) Profile and characterization of the chlorogenic acids in green robusta coffee beans by LC–MSn: identification of seven new classes of compounds. J Agric Food Chem 58:8722–8737CrossRefPubMedGoogle Scholar
  25. Jwa N-S, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Biochem 44:261–273CrossRefPubMedGoogle Scholar
  26. Khanh TD, Xuan TD, Chung IM (2007) Rice allelopathy and the possibility for weed management. Ann Appl Biol 151:325–339CrossRefGoogle Scholar
  27. Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368CrossRefPubMedGoogle Scholar
  28. Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol 150:1567–1575PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360CrossRefPubMedGoogle Scholar
  30. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  31. Markham KR, Tanner GJ, Caasi-Lit M, Whitecross MI, Nayudu M, Mitchell KA (1998) Possible protective role for 3′,4′-dihydroxyflavones induced by enhanced UV-B in a UV-tolerant rice cultivar. Phytochemistry 49:1913–1919CrossRefGoogle Scholar
  32. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117CrossRefPubMedGoogle Scholar
  33. Mubassara S, Zahed UM, Motiur RM, Patwary FK, Akond MA (2008) Seed inoculation effect of Azospirillum spp. on growth, biomass and yield parameter of wheat. Acad J Plant Sci 1:56–61Google Scholar
  34. Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol 24:1395–1403CrossRefPubMedGoogle Scholar
  35. Orcaray L, Igal M, Marino D, Zabalza A, Royuela M (2010) The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Manag Sci 66:262–269CrossRefPubMedGoogle Scholar
  36. Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism—constitutive chemical defences in cereals. New Phytol 159:101–108CrossRefGoogle Scholar
  37. Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59:723–737CrossRefPubMedGoogle Scholar
  38. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  39. Rakwal R, Agrawal GK, Yonekura M, Kodama O (2000) Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Sci 155:213–221CrossRefPubMedGoogle Scholar
  40. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  41. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  42. Sarma BK, Singh UP (2003) Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World J Microbiol Biotechnol 19:123–127CrossRefGoogle Scholar
  43. Schweizer P, Buchala A, Dudler R, Métraux J-P (1998) Induced systemic resistance in wounded rice plants. Plant J 14:475–481CrossRefGoogle Scholar
  44. Shaharoona B, Jamroo GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J Microbiol Biotechnol 17:1300–1307PubMedGoogle Scholar
  45. Spaepen S, Bossuyt S, Engelen K, Marchal K, Vanderleyden J (2014) Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol 201:850–861CrossRefPubMedGoogle Scholar
  46. Stevenson P, Kimmins F, Grayer R, Raveendranath S (1996) Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthoppers, Nilaparvata lugens. Entomol Exp Appl 80:246–249 CrossRefGoogle Scholar
  47. Texier S, Prigent-Combaret C, Gourdon M-H, Poirier M-A, Faivre P, Dorioz J-M, Poulenard J, Jocteur-Monrozier L, Moenne-Loccoz Y, Trevisan D (2008) Persistence of culturable Escherichia coli fecal contaminants in dairy alpine grassland soils. J Environ Qual 37:2299–2310CrossRefPubMedGoogle Scholar
  48. Thomas-Bauzon D, Weinhard P, Villecourt P, Balandreau J (1982) The spermosphere model—its use in growing, counting, and isolating N2-fixing bacteria from the rhizosphere of rice. Can J Microbiol 28:922–928CrossRefGoogle Scholar
  49. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedCentralCrossRefPubMedGoogle Scholar
  50. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905PubMedCentralCrossRefPubMedGoogle Scholar
  51. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedCentralCrossRefPubMedGoogle Scholar
  52. Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506CrossRefPubMedGoogle Scholar
  53. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  54. Weinberg JB, Alexander BD, Majure JM, Williams LW, Kim JY, Vandamme P et al (2006) Burkholderia glumae infection in an infant with chronic granulomatous disease. J Clin Microbiol 45:662–665PubMedCentralCrossRefPubMedGoogle Scholar
  55. Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Amel Chamam
    • 1
    • 2
    • 4
  • Florence Wisniewski-Dyé
    • 1
    • 2
  • Gilles Comte
    • 1
    • 2
  • Cédric Bertrand
    • 3
  • Claire Prigent-Combaret
    • 1
    • 2
  1. 1.UMR CNRS 5557 Ecologie MicrobienneUniversité Lyon 1Villeurbanne CedexFrance
  2. 2.Université de LyonLyonFrance
  3. 3.Laboratoire de Chimie des Biomolécules et de l’Environnement EA 4215Université de PerpignanPerpignanFrance
  4. 4.Unité de Recherche Clinique Lariboisière-Saint LouisParisFrance

Personalised recommendations