, Volume 242, Issue 2, pp 427–434 | Cite as

What can we learn from the transcriptome of the resurrection plant Craterostigma plantagineum?

  • Valentino Giarola
  • Dorothea BartelsEmail author
Part of the following topical collections:
  1. Desiccation Biology


Main conclusion

The desiccation transcriptome of the resurrection plant C. plantagineum is composed of conserved protein coding transcripts, taxonomically restricted transcripts and recently evolved non-protein coding transcripts.

Research in resurrection plants has been hampered by the lack of genome sequence information, but recently introduced sequencing technologies overcome this limitation partially and provide access to the transcriptome of these plants. Transcriptome studies showed that mechanisms involved in desiccation tolerance are conserved in resurrection plants, seeds and pollen. The accumulation of protective molecules such as sugars and LEA proteins are major components in desiccation tolerance. Leaf folding, chloroplast protection and protection during rehydration must involve specific molecular mechanisms, but the basis of such mechanisms is mainly unknown. The study of regulatory regions of a desiccation-induced C. plantagineum gene suggests that cis-regulatory elements may be responsible for expression variations in desiccation tolerant and non-desiccation-tolerant plants. The analysis of the C. plantagineum transcriptome also revealed that part of it is composed of taxonomically restricted genes (TRGs) and non-protein coding RNAs (ncRNAs). TRGs are known to code for new traits required for the adaptation of organisms to particular environmental conditions. Thus the study of TRGs from resurrection plants should reveal species-specific functions related to the desiccation tolerance phenotype. Non-protein coding RNAs can regulate gene expression at epigenetic, transcriptional and post-transcriptional level and thus these RNAs may be key players in the rewiring of regulatory networks of desiccation-related genes in C. plantagineum.


Desiccation tolerance Linderniaceae Non-protein coding RNAs Resurrection plants Taxonomically restricted genes 



Craterostigma desiccation tolerant 1


Late embryogenesis abundant


Non-protein coding RNAs


Taxonomically restricted genes


  1. Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701PubMedCrossRefGoogle Scholar
  2. Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34PubMedCrossRefGoogle Scholar
  4. Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11:2771–2778PubMedCentralPubMedGoogle Scholar
  5. Bernacchia G, Salamini F, Bartels D (1996) Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol 111:1043–1050PubMedCentralPubMedGoogle Scholar
  6. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655PubMedCrossRefGoogle Scholar
  7. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246PubMedCrossRefGoogle Scholar
  8. Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359CrossRefGoogle Scholar
  9. Bockel C, Salamini F, Bartels D (1998) Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152:158–166CrossRefGoogle Scholar
  10. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186:637–644PubMedCentralPubMedCrossRefGoogle Scholar
  11. Burke MJ (1986) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism, and dry organisms. Cornell University Press, Ithaca, NY, pp 358–363Google Scholar
  12. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest ARR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–459PubMedCrossRefGoogle Scholar
  13. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154PubMedCrossRefGoogle Scholar
  14. Clegg JS, Seitz P, Seitz W, Hazlewood CF (1982) Cellular responses to extreme water loss: the water-replacement hypothesis. Cryobiology 19:306–316PubMedCrossRefGoogle Scholar
  15. Cooper K, Farrant JM (2002) Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53:1805–1813PubMedCrossRefGoogle Scholar
  16. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  17. Cullum R, Alder O, Hoodless PA (2011) The next generation: using new sequencing technologies to analyse gene regulation. Respirology 16:210–222PubMedCrossRefGoogle Scholar
  18. Cushman JC, Oliver MJ (2011) Understanding vegetative desiccation tolerance using integrated functional genomics approaches within a comparative evolutionary framework. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecological Studies, vol 215. Springer, Berlin Heidelberg, pp 307–338Google Scholar
  19. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082PubMedCentralPubMedCrossRefGoogle Scholar
  20. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643PubMedCentralPubMedCrossRefGoogle Scholar
  21. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent GS, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med 14:723–730PubMedCentralPubMedCrossRefGoogle Scholar
  22. Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39CrossRefGoogle Scholar
  23. Farrant JM, Vander Willigen C, Loffell DA, Bartsch S, Whittaker A (2003) An investigation into the role of light during desiccation of three angiosperm resurrection plants. Plant, Cell Environ 26:1275–1286CrossRefGoogle Scholar
  24. Farrant JM, Brandt W, Lindsey GG (2007) An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1:72–84Google Scholar
  25. Fischer E (1995) Revision of the Lindernieae (Scrophulariaceae) in Madagascar. 1. The genera Lindernia Allioni and Crepidorhopalon E. Fischer. Bulletin du Muséum National d’Histoire Naturelle, section B, Adansonia: Botanique Phytochemie Ser 4, 17:227–257Google Scholar
  26. Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gaff DF (1989) Responses of desiccation-tolerant “resurrection” plants to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortages. SPB Academic, The Hague, pp 264–311Google Scholar
  28. Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I, Hille J, Temanni MR, Marriott AS, Bergstrom E, Thomas-Oates J, Antonio C, Mueller-Roeber B, Schippers JH, Fernie AR, Toneva V (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70:689–709PubMedCrossRefGoogle Scholar
  29. Giarola V, Challabathula D, Bartels D (2015a) Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. Plant Sci 236:103–115PubMedCrossRefGoogle Scholar
  30. Giarola V, Krey S, Frerichs A, Bartels D (2015b) Taxonomically restricted genes of Craterostigma plantagineum are modulated in their expression during dehydration and rehydration. Planta 241:193–208PubMedCrossRefGoogle Scholar
  31. Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887PubMedCrossRefGoogle Scholar
  32. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefGoogle Scholar
  33. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403CrossRefGoogle Scholar
  35. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488PubMedCrossRefGoogle Scholar
  36. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG (2009) More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 25:404–413PubMedCrossRefGoogle Scholar
  37. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30:1956–1962PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GXY, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235PubMedCentralPubMedCrossRefGoogle Scholar
  39. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  40. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMedCrossRefGoogle Scholar
  41. Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14:110–117PubMedCrossRefGoogle Scholar
  42. Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WG, Driouich A, Farrant JM (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237:739–754PubMedCrossRefGoogle Scholar
  43. Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30PubMedCrossRefGoogle Scholar
  44. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Heidelberg New YorkCrossRefGoogle Scholar
  45. Oliver MJ, O’Mahony P, Wood AJ (1998) “To dryness and beyond”—preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regul 24:193–201CrossRefGoogle Scholar
  46. Oliver M, Tuba Z, Mishler B (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100CrossRefGoogle Scholar
  47. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246PubMedCrossRefGoogle Scholar
  49. Phillips JR, Hilbricht T, Salamini F, Bartels D (2002) A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity. Planta 215:258–266PubMedCrossRefGoogle Scholar
  50. Phillips JR, Fischer E, Baron M, van den Dries N, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54:938–948PubMedCrossRefGoogle Scholar
  51. Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci USA 104:8605–8612PubMedCentralPubMedCrossRefGoogle Scholar
  52. Rodrigo MJ, Bockel C, Blervacq AS, Bartels D (2004) The novel gene CpEdi-9 from the resurrection plant C. plantagineum encodes a hydrophilic protein and is expressed in mature seeds as well as in response to dehydration in leaf phloem tissues. Planta 219:579–589PubMedCrossRefGoogle Scholar
  53. Rodriguez MC, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228PubMedCrossRefGoogle Scholar
  54. Schneider K, Wells B, Schmelzer E, Salamini F, Bartels D (1993) Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189:120–131CrossRefGoogle Scholar
  55. Seine R, Fischer E, Barthlott W (1995) Notes on the Scrophulariaceae of Zimbabwean inselsbergs, with the description of Lindernia syncerus sp. nov. Feddes Repertorium 106:7–12CrossRefGoogle Scholar
  56. Sherwin H, Farrant J (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul 24:203–210CrossRefGoogle Scholar
  57. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938PubMedCentralPubMedCrossRefGoogle Scholar
  58. van den Dries N, Facchinelli F, Giarola V, Phillips JR, Bartels D (2011) Comparative analysis of LEA-like 11-24 gene expression and regulation in related plant species within the Linderniaceae that differ in desiccation tolerance. New Phytol 190:75–88PubMedCrossRefGoogle Scholar
  59. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138PubMedCrossRefGoogle Scholar
  61. Whitehead J, Pandey GK, Kanduri C (2009) Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta 1790:936–947PubMedCrossRefGoogle Scholar
  62. Willigen CV, Pammenter NW, Jaffer MA, Mundree SG, Farrant JM (2003) An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues. Funct Plant Biol 30:281CrossRefGoogle Scholar
  63. Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D (2005) Orphans as taxonomically restricted and ecologically important genes. Microbiology 151:2499–2501PubMedCrossRefGoogle Scholar
  64. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zhang K, Shi Z-M, Chang Y-N, Hu Z-M, Qi H-X, Hong W (2014) The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 547:1–9PubMedCrossRefGoogle Scholar
  66. Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Molecular Physiology and Biotechnology of Plants (IMBIO)University of BonnBonnGermany

Personalised recommendations