Planta

, Volume 242, Issue 3, pp 575–587 | Cite as

Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories

Original Article
Part of the following topical collections:
  1. Polyphenols: biosynthesis and function in plants and ecosystems

Abstract

Main conclusion

UDP-glucose:flavonoid 3-O-glucosyltransferase is essential for maintaining proper production quantity, acylation, and glucosylation of anthocyanin, and defects cause pale and dull flower pigmentation in morning glories.

The Japanese (Ipomoea nil) and the common (I.purpurea) morning glory display bright blue and dark purple flowers, respectively. These flowers contain acylated and glucosylated anthocyanin pigments, and a number of flower color mutants have been isolated in I.nil. Of these, the duskish mutants of I.nil produce pale- and dull-colored flowers. We found that the Duskish gene encodes UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT). The duskish-1 mutation is a frameshift mutation caused by a 4-bp insertion, and duskish-2 is an insertion of a DNA transposon, Tpn10, at 1.3 kb upstream of the 3GT start codon. In the duskish-2 mutant, excision of Tpn10 is responsible for restoration of the expression of the 3GT gene. The recombinant 3GT protein displays expected 3GT enzymatic activities to catalyze 3-O-glucosylation of anthocyanidins in vitro. Anthocyanin analysis of a duskish-2 mutant and its germinal revertant showing pale and normal pigmented flowers, respectively, revealed that the mutation caused around 80 % reduction of anthocyanin accumulation. We further characterized two I.purpurea mutants showing pale brownish-red flowers, and found that they carry the same frameshift mutation in the 3GT gene. Most of the flower anthocyanins in the mutants were previously found to be anthocyanidin 3-O-glucosides lacking several caffeic acid and glucose moieties that are attached to the anthocyanins in the wild-type plants. These results indicated that 3GT is essential not only for production, but also for proper acylation and glucosylation, of anthocyanin in the morning glories.

Keywords

Anthocyanin Flavonoid Flower pigmentation Ipomoea 

Abbreviations

3GT

UDP-glucose:flavonoid 3-O-glucosyltransferase

5GT

Anthocyanin 5-O-glucosyltransferase

F3′H

Flavonoid 3′-hydroxylase

qRT-PCR

Quantitative reverse transcription-PCR

TKS

Tokyo-kokei standard

Supplementary material

425_2015_2321_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1300 kb)

References

  1. Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E (2007) mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 581:2845–2853CrossRefPubMedGoogle Scholar
  2. Chang SM, Lu Y, Rausher MD (2005) Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea. Genetics 170:1967–1978PubMedCentralCrossRefPubMedGoogle Scholar
  3. Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ (2011) Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30:1007–1017CrossRefPubMedGoogle Scholar
  4. Chopra S, Hoshino A, Boddu J, Iida S (2006) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 147–173CrossRefGoogle Scholar
  5. Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325CrossRefPubMedGoogle Scholar
  6. Dooner HK, Nelson OE (1977) Genetic control of UDPglucose:flavonol 3-O-glucosyltransferase in the endosperm of maize. Biochem Genet 15:509–519CrossRefPubMedGoogle Scholar
  7. Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81:3825–3829PubMedCentralCrossRefPubMedGoogle Scholar
  8. Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S (2000) Colour-enhancing protein in blue petals. Nature 407:581CrossRefPubMedGoogle Scholar
  9. Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663PubMedCentralCrossRefPubMedGoogle Scholar
  10. Habu Y, Hisatomi Y, Iida S (1998) Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory. Plant J 16:371–376CrossRefPubMedGoogle Scholar
  11. Hagiwara T (1954) Recent genetics on flower-colour of Japanese morning glory with reference to biochemical studies. Bull Res Coll Agric Vet Sci Nihon Univ 3:1–15Google Scholar
  12. Hagiwara T (1956) Genes and chromosome maps in the Japanese morning glory. Bull Res Coll Agric Vet Sci Nihon Univ 5:34–56Google Scholar
  13. Hoshino A, Morita Y, Choi JD, Saito N, Toki K, Tanaka Y, Iida S (2003) Spontaneous mutations of the flavonoid 3′-hydroxylase gene conferring reddish flowers in the three morning glory species. Plant Cell Physiol 44:990–1001CrossRefPubMedGoogle Scholar
  14. Hoshino A, Park KI, Iida S (2009) Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). J Plant Res 122:215–222CrossRefPubMedGoogle Scholar
  15. Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y (1999) Floricultural traits and transposable elements in the Japanese and common morning glories. Annal New York Acad Sci 870:265–274CrossRefGoogle Scholar
  16. Iida S, Morita Y, Choi JD, Park KI, Hoshino A (2004) Genetics and epigenetics in flower pigmentation associated with transposable element in morning glories. Adv Biophys 38:141–159CrossRefGoogle Scholar
  17. Imai Y (1931) Analysis of flower colour in Pharbitis nil. J Genet 24:203–224CrossRefGoogle Scholar
  18. Imai Y (1935) Recurrent reversible mutations in the duskish allelomorphs of Pharbitis Nil. Z Indukt Abstamm Vererb 68:242–264Google Scholar
  19. Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S (1994) Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375–383PubMedCentralCrossRefPubMedGoogle Scholar
  20. Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyachoknagul S, Ozeki Y, Iida S (1999) Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226:181–188CrossRefPubMedGoogle Scholar
  21. Kondo T, Kawai T, Tamura H, Goto T (1987) Structure determination of heavenly blue anthocyanin, a complex monomeric anthocyanin from the morning glory Ipomoea tricolor, by means of the negative NOE method. Tetrahedron Lett 28:2273–2276CrossRefGoogle Scholar
  22. Kubo H, Nawa N, Lupsea SA (2007) Anthocyaninless1 gene of Arabidopsis thaliana encodes a UDP-glucose:flavonoid-3-O-glucosyltransferase. J Plant Res 120:445–449CrossRefPubMedGoogle Scholar
  23. Larson RL, Coe EH Jr (1977) Gene-dependent flavonoid glucosyltransferase in maize. Biochem Genet 15:153–156CrossRefPubMedGoogle Scholar
  24. Lu TS, Saito N, Yokoi M, Shigihara A, Honda T (1992a) Acylated pelargonidin glycosides in the red-purple flowers of Pharbitis nil. Phytochemistry 31:289–295CrossRefPubMedGoogle Scholar
  25. Lu TS, Saito N, Yokoi M, Shigihara A, Honda T (1992b) Acylated peonidin glycosides in the violet-blue cultivars of Pharbitis nil. Phytochemistry 31:659–663CrossRefGoogle Scholar
  26. Lu Y, Xie L, Chen J (2012) A novel procedure for absolute real-time quantification of gene expression patterns. Plant Methods 8:9PubMedCentralCrossRefPubMedGoogle Scholar
  27. Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010) A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22:3374–3389PubMedCentralCrossRefPubMedGoogle Scholar
  28. Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H, Iida S (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42:353–363CrossRefPubMedGoogle Scholar
  29. Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470CrossRefPubMedGoogle Scholar
  30. Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Hoshino A, Iida S (2014) A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant J 78:294–304CrossRefPubMedGoogle Scholar
  31. Neuffer MG, Coe EH, Wessler S (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  32. Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435:757–758CrossRefPubMedGoogle Scholar
  33. Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S (2005) Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol 46:259–267CrossRefPubMedGoogle Scholar
  34. Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S (2007) A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654CrossRefPubMedGoogle Scholar
  35. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973PubMedCentralCrossRefPubMedGoogle Scholar
  36. Saito N, Tatsuzawa F, Yoda K, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1995) Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea. Phytochemistry 40:1283–1289CrossRefPubMedGoogle Scholar
  37. Saito N, Tatsuzawa F, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1996) Acylated pelargonidin glycosides in red-purple flowers of Ipomoea purpurea. Phytochemistry 43:1365–1370CrossRefPubMedGoogle Scholar
  38. Saito N, Tatsuzawa F, Kasahara K, Iida S, Honda T (1998) Acylated cyanidin 3-sophorosides in the brownish-red flowers of Ipomoea purpurea. Phytochemistry 49:875–880CrossRefGoogle Scholar
  39. Saito N, Toki K, Morita Y, Hoshino A, Iida S, Shigihara A, Honda T (2005) Acylated peonidin glycosides from duskish mutant flowers of Ipomoea nil. Phytochemistry 66:1852–1860CrossRefPubMedGoogle Scholar
  40. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11:436–440CrossRefPubMedGoogle Scholar
  41. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749CrossRefPubMedGoogle Scholar
  42. Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235CrossRefPubMedGoogle Scholar
  43. Toki K, Saito N, Iida S, Hoshino A, Shigihara A, Honda T (2001a) Acylated pelargonidin 3-sophoroside-5-glucoside from the flowers of the Japanese morning glory cultivar ‘Violet’. Heterocycles 55:1241–1248CrossRefGoogle Scholar
  44. Toki K, Saito N, Iida S, Hoshino A, Shigihara A, Honda T (2001b) A novel acylated pelargonidin 3-sophoroside-5-glucoside from greyish-purple flowers of the Japanese morning glory. Heterocycles 55:2261–2267CrossRefGoogle Scholar
  45. Toki K, Saito N, Morita Y, Hoshino A, Iida S, Shigihara A, Honda T (2004) An acylated pelargonidin 3-sophoroside from the pale-brownish red flowers of Ipomoea nil. Heterocycles 63:1449–1454CrossRefGoogle Scholar
  46. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107CrossRefPubMedGoogle Scholar
  47. Yamazaki M, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Saito K (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J Biol Chem 274:7405–7411CrossRefPubMedGoogle Scholar
  48. Zufall RA, Rausher MD (2003) The genetic basis of a flower color polymorphism in the common morning glory (Ipomoea purpurea). J Hered 94:442–448CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Institute for Basic BiologyOkazakiJapan
  2. 2.Faculty of AgricultureMeijo UniversityKasugaiJapan
  3. 3.Suntory Global Innovation Center Ltd.MishimaJapan
  4. 4.Graduate School of Nutritional and Environmental Sciences, Graduate School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
  5. 5.Department of Basic BiologySOKENDAI (The Graduate University for Advanced Studies)OkazakiJapan

Personalised recommendations