, Volume 240, Issue 6, pp 1269–1286 | Cite as

Single nucleotide polymorphisms in a cellulose synthase gene (PtoCesA3) are associated with growth and wood properties in Populus tomentosa

  • Baohua Xu
  • Jiaxing Tian
  • Qingzhang Du
  • Chenrui Gong
  • Wei Pan
  • Deqiang ZhangEmail author
Original Article


In plants, the composition and organization of the cell wall determine cell shape, enable cell expansion, and affect the properties of woody tissues. Cellulose synthase (CesA) genes encode the enzymes involved in the synthesis of cellulose which is the major component of plant primary and secondary cell walls. Here, we isolated a full-length PtoCesA3 cDNA from the stem cambium tissue of Populus tomentosa. Tissue-specific expression profiling showed that PtoCesA3 is highly expressed during primary cell wall formation. Estimation of single nucleotide polymorphism (SNP) diversity and linkage disequilibrium (LD) revealed that PtoCesA3 harbors high SNP diversity (π T = 0.00995 and θ w = 0.0102) and low LD (r 2 ≥ 0.1, within 1,280 bp). Association analysis in a P. tomentosa association population (460 individuals) showed that seven SNPs (false discovery rate Q < 0.10) and five haplotypes (Q < 0.10) were significantly associated with growth and wood properties, explaining 4.09–7.02 % of the phenotypic variance. All significant marker-trait associations were validated in at least one of the three smaller subsets (climatic regions) while five associations were repeated in the linkage population. Variation in RNA transcript abundance among genotypic classes of significant loci was also confirmed in the association or linkage populations. Identification of PtoCesA3 and examining its allelic polymorphisms using association studies open an avenue to understand the mechanism of cellulose synthesis in the primary cell wall and its effects on the properties of woody tissues.


Association genetics Cellulose synthase Populus Primary cell wall Single nucleotide polymorphism Validation population Wood properties 



Cellulose synthase


Cellulose synthesizing complex


Tree diameter at breast height


Fiber length


Fiber width


The length–width ratio of fibers


Tree height


Holocellulose content


Lignin content


Linkage disequilibrium


Quantitative trait loci


Single nucleotide polymorphism


Untranslated region


Stem volume



This work was supported by grants from the National ‘863’ Plan Project (No. 2013AA102702), the State Key Basic Research Program of China (No. 2012CB114506), and the Project of the National Natural Science Foundation of China (No. 31170622, 30872042).

Supplementary material

425_2014_2149_MOESM1_ESM.tif (286 kb)
The plot of nucleotide polymorphism at the PtoCesA3 locus. The left y axis represents the numbers of the loci and the right y axis represents the values of π(-lg), θ(-lg) and Tajima’s D (TIFF 286 kb)
425_2014_2149_MOESM2_ESM.doc (61 kb)
Supplementary material 2 (DOC 49 kb)


  1. Andolfatto P (2005) Adaptive evolution of non-coding DNA in drosophila. Nature 437:1149–1152Google Scholar
  2. Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841PubMedCrossRefGoogle Scholar
  3. Baltunis BS, Wu HX, Powell MB (2007) Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can J For Res 37:2164–2174CrossRefGoogle Scholar
  4. Barrett JC (2009) Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 10:71Google Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  6. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA 108(42):E864–E870Google Scholar
  7. Carroll A, Mansoori N, Li S, Lei L, Vernhettes S, Visser RG, Somerville C, Gu Y, Trindade LM (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ et al (2007) Replicating genotype–phenotype associations. Nature 447:655–660PubMedCrossRefGoogle Scholar
  9. Chen S, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA 107:17188–17193PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chung BY, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5′UTR introns on gene expression in Arabidopsis thaliana. BMC Genom 7:120CrossRefGoogle Scholar
  11. Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201PubMedCrossRefGoogle Scholar
  12. Crowell EF, Gonneau M, Stierhof YD, Höfte H, Vernhettes S (2010) Regulated trafficking of cellulose synthases. Curr Opin Plant Biol 13:700–705PubMedCrossRefGoogle Scholar
  13. DeRose-Wilson LJ, Gaut BS (2007) Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata. BMC Evol Biol 7:66Google Scholar
  14. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG (2010) Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiate. Genetics 185:1477–1487PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dillon SK, Brawner JT, Meder R, Lee DJ, Southerton SG (2012) Association genetics in Corymbia citriodora subsp. variegate identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield. New Phytol 195:596–608PubMedCrossRefGoogle Scholar
  17. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420PubMedCrossRefGoogle Scholar
  18. Du Q, Wang B, Wei Z, Zhang D, Li B (2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered 103:853–862PubMedCrossRefGoogle Scholar
  19. Du Q, Pan W, Xu B, Li B, Zhang D (2013) Polymorphic simple sequence repeat (SSR) loci within cellulose synthase (PtoCesA) genes are associated with growth and wood properties in Populus tomentosa. New Phytol 197:763–776PubMedCrossRefGoogle Scholar
  20. Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber DA, Tolstikov V, Fiehn O, Neale DB (2012) Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytol 193:890–902PubMedCrossRefGoogle Scholar
  21. Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211PubMedCrossRefGoogle Scholar
  22. Geitmann A, Ortega JK (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478PubMedCrossRefGoogle Scholar
  23. Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L (2006) Use of ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378PubMedCrossRefGoogle Scholar
  24. Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. wood property traits. Genetics 175:399–409PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gordon D, Finch SJ (2005) Factors affecting statistical power in the detection of genetic association. J Clin Invest 115:1408–1418PubMedCentralPubMedCrossRefGoogle Scholar
  26. Greene CS, Penrod NM, Williams SM, Moore JH (2009) Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 4(6):e5639. doi: 10.1371/journal.pone.0005639 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB (2013) Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol 197:162–176PubMedCrossRefGoogle Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  30. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231PubMedCrossRefGoogle Scholar
  31. Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hong X, Scofield DG, Lynch M (2006) Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 23:2392–2404PubMedCrossRefGoogle Scholar
  33. Huang ZH (1992) The study on the climatic regionalization of the distributional region of Populus tomentosa. J Beijing For Univ 14:26–32Google Scholar
  34. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L, Salicaceae). Genetics 169:945–953PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922PubMedCrossRefGoogle Scholar
  37. Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 Locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226PubMedCentralPubMedCrossRefGoogle Scholar
  38. Ismail M, Soolanayakanahally RY, Ingvarsson PK, Guy RD, Jansson S, Silim SN, EI-Kassaby YA (2012) Comparative nucleotide diversity across North American and European Populus species. J Mol Evol 74:257–272PubMedCrossRefGoogle Scholar
  39. Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254PubMedCrossRefGoogle Scholar
  40. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  41. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753PubMedCentralPubMedCrossRefGoogle Scholar
  42. Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F, Morgante M (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet Genomes 7:1011–1023CrossRefGoogle Scholar
  43. Martin C, Bhatt K, Baumann K (2001) Shaping in plant cells. Curr Opin Plant Biol 4:540–549PubMedCrossRefGoogle Scholar
  44. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122PubMedCrossRefGoogle Scholar
  45. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedCrossRefGoogle Scholar
  46. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, ColumbiaGoogle Scholar
  47. Olson MS, Robertson AL, Takebayashi N, Silim S, Schroeder WR, Tiffin P (2010) Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytol 186:526–536PubMedCrossRefGoogle Scholar
  48. Pang T, Guo LL, Xia XL, Yin WL (2011) Effects of 5′ UTR intron of AmCBL 1 gene in a xerophyte Ammopiptanthus mongolicus. J Beijing For Univ 33:157–165Google Scholar
  49. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571PubMedCentralPubMedCrossRefGoogle Scholar
  50. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523PubMedCentralPubMedCrossRefGoogle Scholar
  51. Porth I, Klápště J, Skyba O, Lai BS, Geraldes A, Muchero W, Tuskan GA, Douglas CJ, El Kassaby YA, Mansfield SD (2013) Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol 197:777–790PubMedCrossRefGoogle Scholar
  52. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ET (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCentralPubMedCrossRefGoogle Scholar
  53. Reyes F, Orellana A (2008) Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Curr Opin Plant Biol 11:244–251PubMedCrossRefGoogle Scholar
  54. Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498PubMedCentralPubMedCrossRefGoogle Scholar
  55. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schimleck LR, Kube PD, Raymond CA (2004) Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy. Can J Forest Res 34:2363–2370CrossRefGoogle Scholar
  57. Sexton TR, Henry RJ, McManus LJ, Henson M, Thomas DS et al (2010) Genetic association studies in Eucalyptus pilularis Smith (blackbutt). Austral For 73:254–258CrossRefGoogle Scholar
  58. Sexton TR, Henry RJ, Harwood CE, Thomas DS, McManus LJ, Raymond C, Henson M, Shepherd M (2012) Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiol 158:531–541PubMedCentralPubMedCrossRefGoogle Scholar
  59. Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA, Gunter LE, Ranjan P, Vining K, Pomraning KR, Wilhelm LJ, Pellegrini M, Mockler TC, Freitag M, Geraldes A, El-Kassaby YA, Mansfield SD, Cronk QC, Douglas CJ, Strauss SH, Rokhsar D, Tuskan GA (2012) Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol 196:713–725PubMedCrossRefGoogle Scholar
  60. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78PubMedCrossRefGoogle Scholar
  61. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211PubMedCrossRefGoogle Scholar
  62. Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790PubMedCrossRefGoogle Scholar
  63. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCentralPubMedCrossRefGoogle Scholar
  64. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  66. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  67. Thumma BR, Nolan MR, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265PubMedCentralPubMedCrossRefGoogle Scholar
  68. Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG (2009) Identification of a cis-acting regulatory polymorphism in a eucalypt COBRA-like gene affecting cellulose content. Genetics 183:1153–1164PubMedCentralPubMedCrossRefGoogle Scholar
  69. Tian J, Du Q, Chang M, Zhang D (2012) Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS ONE 7:e53116PubMedCentralPubMedCrossRefGoogle Scholar
  70. Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10:282PubMedCentralPubMedCrossRefGoogle Scholar
  71. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276PubMedCrossRefGoogle Scholar
  72. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532PubMedCrossRefGoogle Scholar
  73. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419PubMedCrossRefGoogle Scholar
  74. Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  75. Yu XQ, Bai GH, Liu SW, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu JM, Jiang YW (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64:1537–1551PubMedCentralPubMedCrossRefGoogle Scholar
  76. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91PubMedCrossRefGoogle Scholar
  77. Zhang D, Zhang Z, Yang K (2006) QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populus tomentosa × P. bolleana) × P. tomentosa. Can J Forest Res 36:2015–2023CrossRefGoogle Scholar
  78. Zhang D, Zhang Z, Yang K (2007) Identification of AFLP markers associated with embryonic root development in Populus tomentosa. Silvae Genet 56:27–32Google Scholar
  79. Zhang B, Deng L, Qian Q, Xiong G, Zeng D, Li R, Guo L, Li J, Zhou Y (2009) A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 71:509–524PubMedCrossRefGoogle Scholar
  80. Zhang D, Du Q, Xu B, Zhang Z, Li B (2010a) The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 284:105–119PubMedCrossRefGoogle Scholar
  81. Zhang Z, Ersoz E, Lai C, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010b) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360PubMedCentralPubMedCrossRefGoogle Scholar
  82. Zhang D, Xu B, Yang X, Zhang Z, Li B (2011) The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes 7:443–456CrossRefGoogle Scholar
  83. Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481PubMedCentralPubMedCrossRefGoogle Scholar
  84. Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Baohua Xu
    • 1
    • 2
  • Jiaxing Tian
    • 1
    • 2
  • Qingzhang Du
    • 1
    • 2
  • Chenrui Gong
    • 1
    • 2
  • Wei Pan
    • 1
    • 2
  • Deqiang Zhang
    • 1
    • 2
    Email author
  1. 1.National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China

Personalised recommendations