, Volume 240, Issue 6, pp 1225–1236 | Cite as

First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria

  • Benjamin OttoEmail author
  • Dietmar Schlosser
Original Article


Main conclusion

A green algal phenol oxidase was firstly purified, confirmed to be a laccase, and a hetero-oligomeric quaternary structure is suggested. The operation of a laccase-mediator system is firstly described in algae.

Laccases (EC catalyze the oxidation of a multitude of aromatic substrates. They are well known in higher plants and fungi, while their presence in green algae appears uncertain. Extracellular laccase-like enzyme activity has previously been described in culture supernatants of the green soil alga Tetracystis aeria [Otto et al. in Arch Microbiol 192:759–768, (2010)]. As reported herein, the T. aeria enzyme was purified 120-fold by employing a combination of anion exchange and size exclusion chromatography. The purified enzyme was confirmed to be a laccase according to its substrate specificity. It oxidizes 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (pH optima of pH ≤2.5, 7.0, and 6.5; K m values of 28.8, 40.5, and 1,830 µM; respectively), but not l-tyrosine or Fe2+. ABTS is by far the most efficient substrate. Two polypeptides, A (~110 kDa) and B (71 kDa), were co-purified by the applied procedure, both being highly N-glycosylated (≥~53 and ≥27 %, respectively). As suggested by various gel electrophoretic analyses, the native enzyme (apparent molecular mass of ~220 kDa) most probably is a hetero-oligomer with the composition AB 2 , wherein A is the catalytic subunit and B forms a disulfide-linked homo-dimer B 2 . The decolorization of anthraquinone (Acid Blue 62 and Remazol Brilliant Blue R) and diazo dyes (Reactive Black 5) was studied in the presence of redox-mediating compounds (ABTS and syringaldehyde), demonstrating the operation of the laccase-mediator system in algae for the first time. Thus, laccases from green algae may participate in the biotransformation of a wide spectrum of natural and xenobiotic compounds.


Laccase Phenol oxidase Algae Dyes Laccase-mediator system Quaternary structure 





(Two-dimensional) sodium dodecyl sulfate–polyacrylamide gel electrophoresis


2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)


Acid Blue 62


Ion exchange chromatography

PNGase F

Peptide-N-glycosidase F


Reactive Black 5


Remazol Brilliant Blue R


Size exclusion chromatography



We are grateful to Prof. Werner Reisser and Prof. Hauke Harms for their support. This study was sponsored by the Scholarship Programme of the German Federal Environmental Foundation (DBU; Grant no. 20010/078). The research topic Chemicals in the Environment (CITE) of the Helmholtz Centre for Environmental Research—UFZ provided additional resources for this research.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242. doi: 10.1111/j.1574-4976.2005.00010.x PubMedCrossRefGoogle Scholar
  2. Beeley JG (1985) Glycoprotein and proteoglycan techniques. Laboratory techniques in biochemistry and molecular biology, vol 16. Elsevier, AmsterdamGoogle Scholar
  3. Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O (2012) Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 3:1214. doi: 10.1038/ncomms2210 PubMedCrossRefGoogle Scholar
  4. Cabanes J, García-Cánovas F, Lozano JA, García-Carmona F (1987) A kinetic study of the melanization pathway between l-tyrosine and dopachrome. Biochim Biophys Acta 923:187–195. doi: 10.1016/0304-4165(87)90003-1 PubMedCrossRefGoogle Scholar
  5. Camarero S, Ibarra D, Martínez MJ, Martínez ÁT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microb 71:1775–1784. doi: 10.1128/AEM.71.4.1775-1784.2005 CrossRefGoogle Scholar
  6. Chiaiese P, Palomba F, Tatino F, Lanzillo C, Pinto G, Pollio A, Filippone E (2011) Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater. Enzyme Microb Tech 49:540–546. doi: 10.1016/j.enzmictec.2011.06.002 CrossRefGoogle Scholar
  7. Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103PubMedCentralPubMedGoogle Scholar
  8. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96. doi: 10.1016/j.micron.2003.10.029 PubMedCrossRefGoogle Scholar
  9. De Silva D, Davis-Kaplan S, Fergestad J, Kaplan J (1997) Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem 272:14208–14213. doi: 10.1074/jbc.272.22.14208 PubMedCrossRefGoogle Scholar
  10. Dean JF, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33. doi: 10.1515/hfsg.1994.48.s1.21 CrossRefGoogle Scholar
  11. Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927. doi: 10.1016/S0038-0717(99)00221-7 CrossRefGoogle Scholar
  12. Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335. doi: 10.1007/s00253-007-1265-5 PubMedCrossRefGoogle Scholar
  13. Ferraroni M, Scozzafava A, Ullah S, Tron T, Piscitelli A, Sannia G (2014) Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus. Acta Cryst F 70:76–79. doi: 10.1107/S2053230X13032810 CrossRefGoogle Scholar
  14. Frasconi M, Favero G, Boer H, Koivula A, Mazzei F (2010) Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. BBA Proteins Proteom 1804:899–908. doi: 10.1016/j.bbapap.2009.12.018 CrossRefGoogle Scholar
  15. Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, Frébort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728. doi: 10.1093/pcp/pci074 PubMedCrossRefGoogle Scholar
  16. Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E (2011) The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. J Phycol 47:969–980. doi: 10.1111/j.1529-8817.2011.01051.x CrossRefGoogle Scholar
  17. Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G (2007) Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 75:1293–1300. doi: 10.1007/s00253-007-0954-4 PubMedCrossRefGoogle Scholar
  18. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. doi: 10.1007/s00018-009-0169-1 PubMedCrossRefGoogle Scholar
  19. Harkin JM, Obst JR (1973) Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia 29:381–387. doi: 10.1007/BF01926734 CrossRefGoogle Scholar
  20. Harkin JM, Larsen MJ, Obst JR (1974) Use of syringaldazine for detection of laccase in sporophores of wood rotting fungi. Mycologia 66:469–476PubMedCrossRefGoogle Scholar
  21. Hoopes JT, Dean JF (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Bioch 42:27–33. doi: 10.1016/j.plaphy.2003.10.011 CrossRefGoogle Scholar
  22. Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278. doi: 10.1016/0269-7491(92)90127-V PubMedCrossRefGoogle Scholar
  23. Joel DM, Marbach I, Mayer AM (1978) Laccase in Anacardiaceae. Phytochemistry 17:796–797. doi: 10.1016/S0031-9422(00)94231-6 CrossRefGoogle Scholar
  24. Kılıç NK, Karatay SE, Duygu E, Dönmez G (2011) Potential of Gonium spp. in synthetic reactive dye removal, possible role of laccases and stimulation by triacontanol hormone. Water Air Soil Pollut 222:297–303. doi: 10.1007/s11270-011-0824-7 CrossRefGoogle Scholar
  25. La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1:736–757. doi: 10.1128/EC.1.5.736-757.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  26. La Russa M, De Biasi MG, Chiaiese P, Palomba F, Pollio A, Pinto G, Filippone E (2008) Screening of green microalgae species for extracellular phenoloxidase activity useful for wastewater phycoremediation. In: Proceedings of the 4th European Bioremediation Conference, Chania, Greece, September 03–06, 2008Google Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  28. Lisov A, Zavarzina A, Zavarzin A, Demin V, Leontievsky A (2012) Dimeric and monomeric laccases of soil-stabilizing lichen Solorina crocea: purification, properties and reactions with humic acids. Soil Biol Biochem 45:161–167. doi: 10.1016/j.soilbio.2011.11.004 CrossRefGoogle Scholar
  29. Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432. doi: 10.1111/j.1432-1033.1996.0424k.x PubMedCrossRefGoogle Scholar
  30. McCaig BC, Meagher RB, Dean JF (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636. doi: 10.1007/s00425-004-1472-6 PubMedCrossRefGoogle Scholar
  31. Moilanen U, Osma JF, Winquist E, Leisola M, Couto SR (2010) Decolorization of simulated textile dye baths by crude laccases from Trametes hirsuta and Cerrena unicolor. Eng Life Sci 10:242–247. doi: 10.1002/elsc.200900095 CrossRefGoogle Scholar
  32. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007a) “Blue” laccases. Biochemistry (Moscow) 72:1136–1150. doi: 10.1134/S0006297907100112 CrossRefGoogle Scholar
  33. Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007b) Laccase-mediator systems and their applications: a review. Appl Biochem Micro 43:523–535. doi: 10.1134/S0003683807050055 CrossRefGoogle Scholar
  34. Omura T (1961) Studies on laccases of lacquer trees I. comparison of laccases obtained from Rhus vernicifera and Rhus succedanea. J Biochem 50:264–272PubMedGoogle Scholar
  35. Otto B, Schlosser D, Reisser W (2010) First description of a laccase-like enzyme in soil algae. Arch Microbiol 192:759–768. doi: 10.1007/s00203-010-0603-7 PubMedCrossRefGoogle Scholar
  36. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Tech 33:220–230. doi: 10.1016/S0141-0229(03)00117-0 CrossRefGoogle Scholar
  37. Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77. doi: 10.1016/j.jbiotec.2008.09.001 PubMedCrossRefGoogle Scholar
  38. Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717. doi: 10.1007/s00253-012-3980-9 PubMedCrossRefGoogle Scholar
  39. Pichrtová M, Remias D, Lewis LA, Holzinger A (2013) Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol 65:68–83. doi: 10.1007/s00248-012-0096-9 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Pickel B, Schaller A (2013) Dirigent proteins: molecular characteristics and potential biotechnological applications. Appl Microbiol Biotechnol 97:8427–8438. doi: 10.1007/s00253-013-5167-4 PubMedCrossRefGoogle Scholar
  41. Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980. doi: 10.1105/tpc.105.035154 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Richter H, Lieberei R, Strnad M, Novák O, Gruz J, Rensing SA, von Schwartzenberg K (2012) Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent development in the moss Physcomitrella patens. J Exp Bot 63:5121–5135. doi: 10.1093/jxb/ers169 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226. doi: 10.1016/j.tibtech.2006.03.006 PubMedCrossRefGoogle Scholar
  44. Rönnerstrand S (1943) Untersuchungen über Oxydase, Peroxydase und Ascorbinsäure in einigen Meeresalgen. Dissertation, University of Lund; C. W. Lindström, LundGoogle Scholar
  45. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300. doi: 10.1111/j.1574-6968.1999.tb13386.x CrossRefGoogle Scholar
  46. Shiba T, Xiao L, Miyakoshi T, Chen CL (2000) Oxidation of isoeugenol and coniferyl alcohol catalyzed by laccases isolated from Rhus vernicifera Stokes and Pycnoporus coccineus. J Mol Catal B Enzym 10:605–615. doi: 10.1016/S1381-1177(00)00184-3 CrossRefGoogle Scholar
  47. Soares G, De Amorim MT, Costa-Ferreira M (2001) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89:123–129. doi: 10.1016/S0168-1656(01)00302-9 PubMedCrossRefGoogle Scholar
  48. Sterjiades R, Dean JF, Eriksson KEL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168. doi: 10.1104/pp.99.3.1162 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Sterjiades R, Dean JF, Gamble G, Himmelsbach DS, Eriksson KEL (1993) Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Planta 190:75–87. doi: 10.1007/BF00195678 CrossRefGoogle Scholar
  50. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781. doi: 10.1021/ac60289a016 CrossRefGoogle Scholar
  51. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72. doi: 10.1016/j.envint.2012.10.007 PubMedCrossRefGoogle Scholar
  52. Tavares AP, Cristóvão RO, Loureiro JM, Boaventura RA, Macedo EA (2008) Optimisation of reactive textile dyes degradation by laccase–mediator system. J Chem Technol Biotechnol 83:1609–1615. doi: 10.1002/jctb.1952 CrossRefGoogle Scholar
  53. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26. doi: 10.1099/13500872-140-1-19 CrossRefGoogle Scholar
  54. Wang GD, Li QJ, Luo B, Chen XY (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22:893–897. doi: 10.1038/nbt982 PubMedCrossRefGoogle Scholar
  55. Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colón W (2007) Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. P Natl Acad Sci USA 104:17329–17334. doi: 10.1073/pnas.0705417104 CrossRefGoogle Scholar
  56. Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928. doi: 10.1074/jbc.272.2.924 PubMedCrossRefGoogle Scholar
  57. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BBA Protein Struct M 1292:303–311. doi: 10.1016/0167-4838(95)00210-3 CrossRefGoogle Scholar
  58. Yoshida H (1883) LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. J Chem Soc Trans 43:472–486. doi: 10.1039/CT8834300472 CrossRefGoogle Scholar
  59. Zakrzewski M (2012) Development of computational methods for the analysis of metagenome and metatranscriptome data. Dissertation, University of BielefeldGoogle Scholar
  60. Ziegler R, Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. Beitr Biol Pflanzen 41:11–37Google Scholar
  61. Zille A, Ramalho P, Tzanov T, Millward R, Aires V, Cardoso MH, Ramalho MT, Gübitz GM, Cavaco-Paulo A (2004) Predicting dye biodegradation from redox potentials. Biotechnol Progr 20:1588–1592. doi: 10.1021/bp049963i CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Biology, General and Applied BotanyLeipzig UniversityLeipzigGermany
  2. 2.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research-UFZLeipzigGermany

Personalised recommendations