Advertisement

Planta

, Volume 240, Issue 4, pp 781–796 | Cite as

Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex

  • Marcel Kansy
  • Christian Wilhelm
  • Reimund GossEmail author
Original Article

Abstract

Main conclusion

MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport.

The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.

Keywords

Chlorophyll-binding protein 43 (CP43) Digalactosyldiacylglycerol (DGDG) Light-harvesting complex of photosystem II (LHCII) Monogalactosyldiacylglycerol (MGDG) Phosphatidylglycerol (PG) Sulfoquinovosyldiacylglycerol (SQDG) 

Abbreviations

Chl

Chlorophyll

DGDG

Digalactosyldiacylglycerol

DM

n-Dodecyl β-d-maltoside

DMBQ

2,5-Dimethyl-p-benzoquinone

LHC

Light-harvesting complex

MGDG

Monogalactosyldiacylglycerol

OEC

Oxygen-evolving complex

OJIP

Fluorescence induction transient

PG

Phosphatidylglycerol

PS

Photosystem

SQDG

Sulfoquinovosyldiacylglycerol

Notes

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft (DFG, Grant Go818/7-1) is gratefully acknowledged.

Supplementary material

425_2014_2130_MOESM1_ESM.docx (347 kb)
Elution profile of the size exclusion chromatography of control PSII core complexes and PSII core complexes incubated with the lipids DGDG or PG (DOCX 346 kb)

References

  1. Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180PubMedCrossRefGoogle Scholar
  2. Ballottari M, Girardon J, Dall’Osto L, Bassi R (2012) Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157PubMedCrossRefGoogle Scholar
  3. Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631PubMedCrossRefGoogle Scholar
  4. Barber J, Nield J, Morris EP, Hankamer B (1999) Subunit positioning in photosystem II revisited. Trends Biochem Sci 24:43–45PubMedCrossRefGoogle Scholar
  5. Barry BA (2011) Proton coupled electron transfer and redox active tyrosines in photosystem II. J Photochem Photobiol B 104:60–71PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179PubMedCrossRefPubMedCentralGoogle Scholar
  7. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43PubMedCrossRefGoogle Scholar
  9. Commet A, Boswell N, Yocum CF, Popelka H (2012) pH Optimum of the photosystem II H2O oxidation reaction: Effects of PsbO, the manganese-stabilizing protein, Cl retention, and deprotonation of a component required for O2 evolution activity. Biochemistry 51:3808–3818PubMedCrossRefGoogle Scholar
  10. Debus RJ, Barry BA, Sithole I, Babcock GT, McIntosh L (1988) Directed mutagenesis indicates that the donor to P680 + in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27:9071–9074PubMedCrossRefGoogle Scholar
  11. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39PubMedCrossRefGoogle Scholar
  12. Dubertret G, Gerard-Hirne C, Tremolieres A (2002) Importance of trans3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Physiol Biochem 40:829–836CrossRefGoogle Scholar
  13. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  14. Fotinou C, Kokkinidis M, Fritzsch G, Haase W, Michel H, Ghanotakis DF (1993) Characterization of a photosystem II core and its three-dimensional crystals. Photosynth Res 37:41–48PubMedCrossRefGoogle Scholar
  15. French CS, Smith JH, Virgin HI, Airth RL (1956) Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol 31:369–374PubMedCrossRefPubMedCentralGoogle Scholar
  16. Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276PubMedCrossRefGoogle Scholar
  17. Frommolt R, Goss R, Wilhelm C (2001) The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach. Planta 213:446–456PubMedCrossRefGoogle Scholar
  18. Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S, Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41:3796–3802PubMedCrossRefGoogle Scholar
  19. Goss R, Opitz C, Lepetit B, Wilhelm C (2008) The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. Planta 228:999–1009PubMedCrossRefGoogle Scholar
  20. Goss R, Richter M, Wild A (1997) Pigment composition of PS II pigment protein complexes purified by anion exchange chromatography. Identification of xanthophyll cycle pigment binding proteins. J Plant Physiol 151:115–119CrossRefGoogle Scholar
  21. Gounaris K, Sen A, Brain APR, Quinn PJ, Williams WP (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim Biophys Acta 728:129–139CrossRefGoogle Scholar
  22. Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NPA (2005) Temperature and light modulate the trans3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non- photochemical quenching. Plant Cell Physiol 46:1272–1282PubMedCrossRefGoogle Scholar
  23. Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105PubMedCrossRefGoogle Scholar
  24. Guo SK, Tang CQ, Yang ZL, Li LB, Kuang TY, Gong YD, Zhao NM (2004) Effects of acid and alkali on the light absorption, energy transfer and protein secondary structures of core antenna subunits CP43 and CP47 of photosystem II. Photochem Photobiol 79:291–296PubMedCrossRefGoogle Scholar
  25. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  26. Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671PubMedCrossRefGoogle Scholar
  27. Hankamer B, Morris E, Nield J, Gerle C, Barber J (2001) Three-dimensional structure of the photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135:262–269PubMedCrossRefGoogle Scholar
  28. Heinemeyer J, Eubel H, Wehmhoner D, Jänsch L, Braun H (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692PubMedCrossRefGoogle Scholar
  29. Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112CrossRefGoogle Scholar
  30. Itoh S, Kozuki T, Nishida K, Fukushima Y, Yamakawa H, Domonkos I, Laczkó-Dobos H, Kis M, Ughy B, Gombos Z (2012) Two functional sites of phosphatidylglycerol for regulation of reaction of plastoquinone QB in photosystem II. Biochim Biophys Acta 1817:287–297PubMedCrossRefGoogle Scholar
  31. Jensen RG, Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 56:1095–1101PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kawakami K, Umena Y, Iwai M, Kawabata Y, Ikeuchi M, Kamiya N, Shen J (2011) Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. Biochim Biophys Acta 1807:319–325PubMedCrossRefGoogle Scholar
  33. Kern J, Guskov A (2011) Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B 104:19–34PubMedCrossRefGoogle Scholar
  34. Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251PubMedCrossRefGoogle Scholar
  35. Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12PubMedCrossRefGoogle Scholar
  36. Krausz E, Hughes JL, Smith PJ, Pace RJ, Arskold SP (2005) Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. Photosynth Res 84:193–199PubMedCrossRefGoogle Scholar
  37. Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275:6509–6514PubMedCrossRefGoogle Scholar
  38. Laczkó-Dobos H, Ughy B, Tóth SZ, Komenda J, Zsiros O, Domonkos I, Párducz Á, Bogos B, Komura M, Itoh S, Gombos Z (2008) Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta 1777:1184–1194PubMedCrossRefGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  40. Latowski D, Akerlund HE, Strzałka K (2004) Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43:4417–4420PubMedCrossRefGoogle Scholar
  41. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519PubMedCrossRefGoogle Scholar
  42. Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208PubMedCrossRefGoogle Scholar
  43. Murata N, Siegenthaler PA (1998) Lipids in photosynthesis: an overview. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 1–20Google Scholar
  44. Pagliano C, Barera S, Chimirri F, Saracco G, Barber J (2012) Comparison of the α and β isomeric forms of the detergent n-dodecyl-d-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochim Biophys Acta 1817:1506–1515PubMedCrossRefGoogle Scholar
  45. Pospíšil P (2011) Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B 104:341–347PubMedCrossRefGoogle Scholar
  46. Reifarth F, Christen G, Seeliger AG, Dormann P, Benning C, Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36:11769–11776PubMedCrossRefGoogle Scholar
  47. Renger G (2011) Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism. J Photochem Photobiol B 104:35–43PubMedCrossRefGoogle Scholar
  48. Richter M, Goss R, Wagner B, Holzwarth AR (1999) Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 38:12718–12726PubMedCrossRefGoogle Scholar
  49. Sakurai I, Shen J, Leng J, Ohashi S, Kobayashi M, Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem 140:201–209PubMedCrossRefGoogle Scholar
  50. Schaller S, Latowski D, Jemiola-Rzeminska M, Dawood A, Wilhelm C, Strzałka K, Goss R (2011) Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim Biophys Acta 1807:326–335PubMedCrossRefGoogle Scholar
  51. Siegbahn P (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880PubMedCrossRefGoogle Scholar
  52. Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97:1473–1476PubMedCrossRefPubMedCentralGoogle Scholar
  53. Srivastava A, Strasser RJ, Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinardtii. Photosynth Res 43:131–141PubMedCrossRefGoogle Scholar
  54. Steffen R, Kelly AA, Huyer J, Dörmann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44:3134–3142PubMedCrossRefGoogle Scholar
  55. Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257PubMedCrossRefGoogle Scholar
  56. Stirbet A, Govindjee , Strasser BJ, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J Theor Biol 193:131–151CrossRefGoogle Scholar
  57. Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescene transient in plants and cyanobacteria. Photochem Photobiol 61:32–42CrossRefGoogle Scholar
  58. Takahashi T, Inoue-Kashino N, Ozawa S, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284:15598–15606PubMedCrossRefPubMedCentralGoogle Scholar
  59. Umena Y, Kawakami K, Shen J, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 473:55–60PubMedCrossRefGoogle Scholar
  60. Ventrella A, Catucci L, Mascolo G, Corcelli A, Agostiano A (2007) Isolation and characterization of lipids strictly associated to PSII complexes: focus on cardiolipin structural and functional role. Biochim Biophys Acta 1768:1620–1627PubMedCrossRefGoogle Scholar
  61. Wang ZG, Xu TH, Liu C, Yang CH (2010) Fast isolation of highly active photosystem II core complexes from spinach. J Integr Plant Biol 52:793–800PubMedCrossRefGoogle Scholar
  62. Watanabe M, Iwai M, Narikawa R, Ikeuchi M (2009) Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol 50:1674–1680PubMedCrossRefGoogle Scholar
  63. Wright SW, Mantoura RFC (1997) Guidelines for collection and pigment analysis of field samples. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Monographs on oceanographic methodology: phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Publishing, Paris, pp 429–445Google Scholar
  64. Wu W, Ping W, Wu H, Li M, Gu D, Xu Y (2013) Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b(6)f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim Biophys Acta 1827:709–722PubMedCrossRefGoogle Scholar
  65. Yang W, Liu S, Feng FY, Hou HT, Jiang GZ, Xu YN, Kuang TY (2004) Effects of phosphate deficiency on the lipid composition in cucumberthylakoid membranes and PSII particles. Plant Sci 166:1575–1579CrossRefGoogle Scholar
  66. Yoshioka M, Yamamoto Y (2011) Quality control of photosystem II: where and how does the degradation of the D1 protein by FtsH proteases start under light stress?—facts and hypotheses. J Photochem Photobiol, B 104:229–235CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant Physiology, Institute of BiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations