, Volume 240, Issue 5, pp 1097–1112 | Cite as

Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa

  • Nan Chao
  • Shu-Xin Liu
  • Bing-Mei Liu
  • Ning Li
  • Xiang-Ning Jiang
  • Ying GaiEmail author
Original Article


Main conclusion

Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD.

Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.


Cinnamyl alcohol dehydrogenase (CAD) Gene family Function Monolignols Populus tomentosa Sinapyl alcohol dehydrogenase (SAD) 



This work was jointly supported by the National Natural Science Foundation NSF 31300498 to Y.G., High Technology Research and Development (863 Program 2011AA100203) to X.N.JIANG, and Grants J1103516, J1310005 and ITR 13047 for the Basic Science Basement Facility Buildup and Talent Training Program Project from National Natural Science Foundation of China (NSFC) to BJFU.

Supplementary material

425_2014_2128_MOESM1_ESM.xlsx (11 kb)
Online Resource Table S1 Primers used for PCR (XLSX 11 kb)
425_2014_2128_MOESM2_ESM.xlsx (11 kb)
Online Resource Table S2 Homology matrix of 13 sequences (DNAman7.0) (XLSX 10 kb)
425_2014_2128_MOESM3_ESM.xlsx (16 kb)
Online Resource Table S3 Blast results for PtoCAD/CAD-like genes with probes (XLSX 15 kb)
425_2014_2128_MOESM4_ESM.xlsx (17 kb)
Online Resource Table S4 List of plant genes used in CAD gene phylogenetic analyses (XLSX 17 kb)
425_2014_2128_MOESM5_ESM.pdf (399 kb)
Supplementary material 5 (PDF 398 kb)


  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  2. Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto DS, Yellanki P, Carlson JE (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biol 9:26PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides x P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10:100PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barakate A, Stephens J, Goldie A, Hunter WN, Marshall D, Hancock RD, Lapierre C, Morreel K, Boerjan W, Halpin C (2011) Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. Plant Cell 23:4492–4506PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490PubMedPubMedCentralGoogle Scholar
  6. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  8. Bukh C, Nord-Larsen PH, Rasmussen SK (2012) Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. J Exp Bot 63:6223–6236PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  10. DeLano WL (2002) The PyMOL molecular graphics system. Palo Alto, CAGoogle Scholar
  11. Deng WW, Zhang M, Wu JQ, Jiang ZZ, Tang L, Li YY, Wei CL, Jiang CJ, Wan XC (2013) Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. J Plant Physiol 170:272–282PubMedCrossRefGoogle Scholar
  12. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  13. Eudes A, Pollet B, Sibout R, Do CT, Seguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39PubMedCrossRefGoogle Scholar
  14. Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY (2009) Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol 51:626–637PubMedCrossRefGoogle Scholar
  15. Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525PubMedCrossRefGoogle Scholar
  17. Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight M, Schuch Wt, Boudet A (1992) Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53PubMedCrossRefGoogle Scholar
  18. Grisebach H, Wyrambik D (1975) Purification and properties of isoenzymes of cinnamyl alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem 59:9–15PubMedCrossRefGoogle Scholar
  19. Gross G, Stöckigt J, Mansell R, Zenk M (1973) Three novel enzymes involved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate-Co a ligase, feruloyl-Co a reductase and coniferyl alcohol oxidoreductase. FEBS Lett 31:283–286CrossRefGoogle Scholar
  20. Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D (2007a) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363PubMedCrossRefPubMedCentralGoogle Scholar
  21. Guillaumie S, Pichon M, Martinant J-P, Bosio M, Goffner D, Barrière Y (2007b) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226:235–250PubMedCrossRefGoogle Scholar
  22. Guo DM, Ran JH, Wang XQ (2010) Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD. J Mol Evol 71:202–218PubMedCrossRefGoogle Scholar
  23. Halpin C, Knight ME, Grima-Pettenati J, Goffner D, Boudet A, Schuch W (1992) Purification and characterization of cinnamyl alcohol dehydrogenase from tobacco stems. Plant Physiol 98:12–16PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jourdes M, Cardenas CL, Laskar DD, Moinuddin SG, Davin LB, Lewis NG (2007) Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-hydroxycinnamaldehydes: evolutionary implications. Phytochemistry 68:1932–1956PubMedCrossRefGoogle Scholar
  25. Jung H, Deetz D (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatifield RD et al (Eds) Forage cell wall structure and digestibility. Madison: America Society of Agronomy, Crop Science Society of America, Soil Science Society of America, pp 315–346Google Scholar
  26. Kanno H, Fujii H, Hirono A, Miwa S (1991) cDNA cloning of human R-type pyruvate kinase and identification of a single amino acid substitution (Thr384—Met) affecting enzymatic stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic anemia. Proc Natl Acad Sci 88:8218–8221PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kiedrowski S, Kawalleck P, Hahlbrock K, Somssich I, Dangl J (1992) Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J 11:4677PubMedPubMedCentralGoogle Scholar
  28. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kim SJ (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci 101:1455–1460PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kim S-J, Kim K-W, Cho M-H, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Phytochemistry 68:1957–1974PubMedCrossRefGoogle Scholar
  31. Kim YH, Bae JM, Huh GH (2010) Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet potato in response to plant developmental stage and environmental stress. Plant Cell Rep 29:779–791PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kitagawa K, Kunugita N, Kitagawa M, Kawamoto T (2001) CYP2A6* 6, a novel polymorphism in cytochrome p450 2A6, has a single amino acid substitution (R128Q) that inactivates enzymatic activity. J Biol Chem 276:17830–17835PubMedCrossRefGoogle Scholar
  33. Knight ME, Halpin C, Schuch W (1992) Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Mol Biol 19:793–801PubMedCrossRefGoogle Scholar
  34. Lapierre C, Pilate G, Pollet B, Mila I, Leple JC, Jouanin L, Kim H, Ralph J (2004) Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. Phytochemistry 65:313–321PubMedCrossRefGoogle Scholar
  35. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861PubMedCrossRefPubMedCentralGoogle Scholar
  36. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1586PubMedCrossRefPubMedCentralGoogle Scholar
  37. Li X, Yang Y, Yao J, Chen G, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697PubMedCrossRefGoogle Scholar
  38. Li X, Ma D, Chen J, Pu G, Ji Y, Lei C, Du Z, Liu B, Ye H, Wang H (2012) Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua. Plant Sci 193–194:85–95PubMedCrossRefGoogle Scholar
  39. Ma Q-H (2010) Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot 61:2735–2744PubMedCrossRefPubMedCentralGoogle Scholar
  40. MacKay JJ, Liu W, Whetten R, Sederoff RR, O’Malley DM (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol Gen Genet 247:537–545PubMedCrossRefGoogle Scholar
  41. MacKay JJ, O’Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94:8255–8260PubMedCrossRefPubMedCentralGoogle Scholar
  42. McKie JH, Jaouhari R, Douglas KT, Goffner D, Feuillet C, Grima-Pettenati J, Boudet AM, Baltas M, Gorrichon L (1993) A molecular model for cinnamyl alcohol dehydrogenase, a plant aromatic alcohol dehydrogenase involved in lignification. Biochim Biophys Acta 1202:61–69PubMedCrossRefGoogle Scholar
  43. Mee B, Kelleher D, Frias J, Malone R, Tipton KF, Henehan GT, Windle HJ (2005) Characterization of cinnamyl alcohol dehydrogenase of Helicobacter pylori. An aldehyde dismutating enzyme. FEBS J 272:1255–1264PubMedCrossRefGoogle Scholar
  44. O’Malley DM, Porter S, Sederoff RR (1992) Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in Loblolly Pine (Pinus taeda L.). Plant Physiol 98:1364–1371PubMedCrossRefPubMedCentralGoogle Scholar
  45. Persson B, Zigler JS, Jörnvall H (1994) A super-family of medium-chain dehydrogenases/reductases (MDR). Eur J Biochem 226:15–22PubMedCrossRefGoogle Scholar
  46. Raes J (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  48. Ragnar M, Lindgren CT, Nilvebrant N-O (2000) pKa-values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol 20:277–305CrossRefGoogle Scholar
  49. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  50. Riveros-Rosas H, Julián-Sánchez A, Villalobos-Molina R, Pardo JP, Piña E (2003) Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Eur J Biochem 270:3309–3334PubMedCrossRefGoogle Scholar
  51. Saathoff AJ, Tobias CM, Sattler SE, Haas EJ, Twigg P, Sarath G (2011) Switchgrass contains two cinnamyl alcohol dehydrogenases involved in lignin formation. BioEnergy Res 4:120–133CrossRefGoogle Scholar
  52. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2008) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in Sorghum [Sorghum bicolor (L.) Moench] Identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795PubMedCrossRefGoogle Scholar
  53. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol 150:584–595PubMedCrossRefPubMedCentralGoogle Scholar
  54. Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163PubMedCrossRefGoogle Scholar
  55. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860PubMedCrossRefPubMedCentralGoogle Scholar
  56. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell Online 17:2059–2076CrossRefGoogle Scholar
  57. Sjodin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The populus genome integrative explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182:1013–1025PubMedCrossRefGoogle Scholar
  58. Somssich IE, Wernert P, Kiedrowski S, Hahlbrock K (1996) Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol: NADP + oxidoreductase. Proc Natl Acad Sci USA 93:14199–14203PubMedCrossRefPubMedCentralGoogle Scholar
  59. Stoop JM, Pharr DM (1992) Partial purification and characterization of mannitol: mannose 1-oxidoreductase from celeriac (Apium graveolens var. rapaceum) roots. Arch Biochem Biophys 298:612–619PubMedCrossRefGoogle Scholar
  60. Stoop JM, Williamson JD, Mason D (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144CrossRefGoogle Scholar
  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefPubMedCentralGoogle Scholar
  62. Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678–688PubMedCrossRefGoogle Scholar
  63. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  64. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905PubMedCrossRefPubMedCentralGoogle Scholar
  65. Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529PubMedCrossRefPubMedCentralGoogle Scholar
  66. Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106PubMedCrossRefGoogle Scholar
  67. Walter MH, Grima-Pettenati J, Grand C, Boudet AM, Lamb CJ (1988) Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci USA 85:5546–5550PubMedCrossRefPubMedCentralGoogle Scholar
  68. Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013PubMedCrossRefPubMedCentralGoogle Scholar
  69. Youn B, Camacho R, Moinuddin SG, Lee C, Davin LB, Lewis NG, Kang C (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687–1697PubMedCrossRefGoogle Scholar
  70. Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nan Chao
    • 1
  • Shu-Xin Liu
    • 1
  • Bing-Mei Liu
    • 1
  • Ning Li
    • 1
  • Xiang-Ning Jiang
    • 1
    • 2
    • 3
  • Ying Gai
    • 1
    • 2
    Email author
  1. 1.College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry AdministrationBeijingPeople’s Republic of China
  3. 3.National Engineering Laboratory for Tree BreedingBeijingPeople’s Republic of China

Personalised recommendations