Planta

, Volume 240, Issue 4, pp 877–889 | Cite as

A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants

  • Adeyemi O. Aremu
  • Nqobile A. Masondo
  • Taofik O. Sunmonu
  • Manoj G. Kulkarni
  • Marek Zatloukal
  • Lukáš Spichal
  • Karel Doležal
  • Johannes Van Staden
Original Article

Abstract

The effect of 2-chloro-6-(3-methoxyphenyl)aminopurine [inhibitor of cytokinin degradation (INCYDE)] at 10 nM on growth, biochemical and photosynthetic efficiency in sodium chloride (NaCl)-stressed (75, 100 and 150 mM) tomato plants was investigated. NaCl-induced decline in plant vigor index was slightly reversed by both drenching and foliar application of INCYDE. Foliar application of INCYDE significantly increased the flower number in the control and 75 mM NaCl-supplemented plants, while drenching was more effective in 150 mM NaCl-stressed plants. Antioxidant enzymes (peroxidase, catalase and superoxide dismutase) were enhanced in the presence of INCYDE in the control and NaCl-stressed plants. Higher concentration of malondialdehyde (MDA) associated with oxidative (lipid peroxidation) damage in leaf tissue which was evident in the presence of NaCl stress was significantly attenuated with the drenching and foliar application of INCYDE. Regardless of NaCl concentration, application of INCYDE had no significant influence on maximum quantum efficiency of photosystem II. However, the reduced quantum yield of photosystem II and coefficient of photochemical quenching under continuous illumination with actinic light at four intensities (264, 488, 800 and 1,200 µmol m−2 s−1) in NaCl-stressed (100 and 150 mM) tomato plants were significantly alleviated by drenching application with INCYDE. Non-photochemical quenching of the singlet excited state of chlorophyll a and relative electron transfer rate were generally higher in INCYDE-treated plants than in the controls. From an agricultural perspective, these findings indicate the potential of INCYDE in protecting plants against NaCl stress and the possibility of enhanced productivity.

Keywords

Antioxidant Cytokinins Chlorophyll Solanum Salinity stress Phenolics 

Abbreviations

ABA

Abscisic acid

CAT

Catalase

CK

Cytokinin

CKX

Cytokinin oxidase/dehydrogenase

DW

Dry weight

ETR

Relative electron transport rate

Fm

Maximum fluorescence yield

Fo

Minimum fluorescence yield

Fv

Variable fluorescence (Fm–Fo)

Fv/Fm

Maximum quantum efficiency of PSII

FW

Fresh weight

GAE

Gallic acid equivalents

HS

Hoagland’s nutrient solution

INCYDE

Inhibitor of cytokinin degradation 2-chloro-6-(3-methoxyphenyl)aminopurine

MDA

Malondialdehyde

NaCl

Sodium chloride

NPQ

Non-photochemical quenching

PAR

Photosynthetically available radiation

POD

Peroxidase

ϕPSII

Actual quantum yield of photosystem II

PSII

Photosystem II

PVI

Plant vigor index

qP

Photochemical quenching

ROS

Reactive oxygen species

SOD

Superoxide dismutase

References

  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  2. Amoo SO, Aremu AO, Moyo M, Szüčová L, Doležal K, Van Staden J (2014) Physiological effects of a novel aromatic cytokinin analogue in micropropagated Aloe arborescens and Harpagophytum procumbens. Plant Cell Tiss Organ Cult 116:17–26CrossRefGoogle Scholar
  3. Aremu AO, Bairu MW, Novák O, Plačková L, Zatloukal M, Doležal K, Finnie JF, Strnad M, Van Staden J (2012a) Physiological responses and endogenous cytokinin profiles of tissue-cultured ‘Williams’ bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments. Planta 236:1775–1790PubMedCrossRefGoogle Scholar
  4. Aremu AO, Bairu MW, Szüčová L, Finnie JF, Van Staden J (2012b) The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated ‘Williams’ bananas. J Plant Physiol 169:1530–1541PubMedCrossRefGoogle Scholar
  5. Arthur GD, Aremu AO, Kulkarni MG, Van Staden J (2012) Vermicompost leachate alleviates deficiency of phosphorus and potassium in tomato seedlings. HortScience 47:1304–1307Google Scholar
  6. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  7. Auer CA (1997) Cytokinin conjugation: recent advances and patterns in plant evolution. Plant Growth Regul 23:17–32CrossRefGoogle Scholar
  8. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  9. Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beckett RP, Marschall M, Laufer Z (2005) Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast-rather than slow-relaxing quenching. J Bryol 27:7–12CrossRefGoogle Scholar
  11. Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32:170–189PubMedCrossRefGoogle Scholar
  12. Bernier G (2013) My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot 64:5795–5799PubMedCrossRefGoogle Scholar
  13. Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, Kramer MD, Morris RO (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125:378–386PubMedPubMedCentralCrossRefGoogle Scholar
  14. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504PubMedCrossRefGoogle Scholar
  15. Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70PubMedCrossRefGoogle Scholar
  16. Chaudhury AM, Letham S, Craig S, Dennis ES (1993) amp1—a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907–916CrossRefGoogle Scholar
  17. Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362CrossRefGoogle Scholar
  18. Chinsamy M, Kulkarni MG, Van Staden J (2013) Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms. Plant Growth Regul 71:41–47CrossRefGoogle Scholar
  19. Cuartero J, Fernández-Muñoz R (1998) Tomato and salinity. Sci Hortic 78:83–125CrossRefGoogle Scholar
  20. D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979PubMedCrossRefGoogle Scholar
  21. Fan M, Bie Z, Krumbein A, Schwarz D (2011) Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Sci Hortic 130:615–623CrossRefGoogle Scholar
  22. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452PubMedCrossRefGoogle Scholar
  23. Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Biochem 51:109–115PubMedCrossRefGoogle Scholar
  24. Gemrotová M, Kulkarni MG, Stirk WA, Strnad M, Van Staden J, Spíchal L (2013) Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul 71:137–145CrossRefGoogle Scholar
  25. Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  26. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179PubMedCrossRefGoogle Scholar
  27. He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerf 59:128–133CrossRefGoogle Scholar
  28. Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436CrossRefGoogle Scholar
  29. Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2000) Salt tolerance classification of crops according to soil salinity and to water stress day index. Agr Wat Manag 43:99–109CrossRefGoogle Scholar
  30. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608PubMedCrossRefGoogle Scholar
  31. Landi M, Remorini D, Pardossi A, Guidi L (2013) Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J Plant Res 126:775–786PubMedCrossRefGoogle Scholar
  32. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology, vol 148., Academic PressNew York, USA, pp 350–382Google Scholar
  33. Lu S-w, Li T-l, Jiang J (2009) Tomato key sucrose metabolizing enzyme activities and gene expression under NaCl and PEG iso-osmotic stresses. Agr Sci China 8:1046–1052CrossRefGoogle Scholar
  34. Martins N, Osório ML, Gonçalves S, Osório J, Palma T, Romano A (2013) Physiological responses of Plantago algarbiensis and P. almogravensis shoots and plantlets to low pH and aluminum stress. Acta Physiol Plant 35:615–625CrossRefGoogle Scholar
  35. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  36. Mrízová K, Jiskrová E, Vyroubalová Š, Novák O, Ohnoutková L, Pospíšilová H, Frébort I, Harwood WA, Galuszka P (2013) Overexpression of cytokinin dehydrogenase genes in Barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS ONE 8:e79029PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nakaune M, Hanada A, Yin Y-G, Matsukura C, Yamaguchi S, Ezura H (2012) Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol Biochem 52:28–37PubMedCrossRefGoogle Scholar
  38. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882PubMedCrossRefGoogle Scholar
  39. Prokopová J, Špundová M, Sedlářová M, Husičková A, Novotný R, Doležal K, Nauš J, Lebeda A (2010) Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol Biochem 48:716–723PubMedCrossRefGoogle Scholar
  40. Rady MM (2012) A novel organo-mineral fertilizer can mitigate salinity stress effects for tomato production on reclaimed saline soil. S Afr J Bot 81:8–14CrossRefGoogle Scholar
  41. Reusche M, Klásková J, Thole K, Truskina J, Novák O, Janz D, Strnad M, Spíchal L, Lipka V, Teichmann T (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance gainst Verticillium longisporum. Mol Plant Microb Interact 26:850–860CrossRefGoogle Scholar
  42. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  43. Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252PubMedCrossRefGoogle Scholar
  44. Schnablová R, Synková H, Vicánková A, Burketová L, Eder J, Cvikrová M (2006) Transgenic ipt tobacco overproducing cytokinins overaccumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44:526–534PubMedCrossRefGoogle Scholar
  45. Shi X, Gupta S, Lindquist IE, Cameron CT, Mudge J, Rashotte AM (2013) Transcriptome analysis of cytokinin response in tomato leaves. PLoS ONE 8:e55090PubMedPubMedCentralCrossRefGoogle Scholar
  46. Šmehilová M, Spíchal L (2014) The biotechnological potential of cytokinin status manipulation. In: Nick P, Opatrny Z (eds) Applied plant cell biology. Springer, Berlin Heidelberg, pp 103–130CrossRefGoogle Scholar
  47. Sunmonu TO, Van Staden J (2014) Phytotoxicity evaluation of six fast-growing tree species in South Africa. S Afr J Bot 90:101–106CrossRefGoogle Scholar
  48. Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C-F, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816PubMedPubMedCentralCrossRefGoogle Scholar
  49. Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255PubMedCrossRefGoogle Scholar
  50. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20PubMedCrossRefGoogle Scholar
  51. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538PubMedCrossRefGoogle Scholar
  52. Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2013) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31:97–117PubMedCrossRefGoogle Scholar
  53. Zalabák D, Galuszka P, Mrízová K, Podlešáková K, Gu R, Frébortová J (2014) Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol Biochem 74:283–293PubMedCrossRefGoogle Scholar
  54. Zatloukal M, Gemrotová M, Dolezal K, Havlícek L, Spíchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275PubMedCrossRefGoogle Scholar
  55. Zhang R, Li J, Guo S, Tezuka T (2009) Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162PubMedCrossRefGoogle Scholar
  56. Zribi L, Fatma G, Fatma R, Salwa R, Hassan N, Néjib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci Hortic 120:367–372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adeyemi O. Aremu
    • 1
  • Nqobile A. Masondo
    • 1
  • Taofik O. Sunmonu
    • 1
  • Manoj G. Kulkarni
    • 1
  • Marek Zatloukal
    • 2
  • Lukáš Spichal
    • 2
  • Karel Doležal
    • 2
  • Johannes Van Staden
    • 1
  1. 1.Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  2. 2.Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University and Institute of Experimental Botany, Academy of Sciences of Czech RepublicOlomoucCzech Republic

Personalised recommendations