, Volume 240, Issue 5, pp 1037–1050 | Cite as

Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits

  • Judith Hempel
  • Evelyn Amrehn
  • Silvia Quesada
  • Patricia Esquivel
  • Víctor M. Jiménez
  • Annerose Heller
  • Reinhold Carle
  • Ralf M. SchweiggertEmail author
Original Article


Main conclusion

High levels of β-carotene, lycopene, and the rare γ-carotene occur predominantly lipid-dissolved in the chromoplasts of peach palm fruits. First proof of their absorption from these fruits is reported.

The structural diversity, the physical deposition state in planta, and the human bioavailability of carotenoids from the edible fruits of diverse orange and yellow-colored peach palm (Bactris gasipaes Kunth) varieties were investigated. HPLC–PDA–MSn revealed a broad range of carotenes, reaching total carotenoid levels from 0.7 to 13.9 mg/100 g FW. Besides the predominant (all-E)-β-carotene (0.4–5.4 mg/100 g FW), two (Z)-isomers of γ-carotene (0.1–3.9 mg/100 g FW), and one (Z)-lycopene isomer (0.04–0.83 mg/100 g FW) prevailed. Approximately 89–94 % of total carotenoid content pertained to provitamin A carotenoids with retinol activity equivalents ranging from 37 to 609 µg/100 g FW. The physical deposition state of these carotenoids in planta was investigated using light, transmission electron, and scanning electron microscopy. The plastids found in both orange and yellow-colored fruit mesocarps were amylo-chromoplasts of the globular type, containing carotenoids predominantly in a lipid-dissolved form. The hypothesis of lipid-dissolved carotenoids was supported by simple solubility estimations based on carotenoid and lipid contents of the fruit mesocarp. In our study, we report first results on the human bioavailability of γ-carotene, β-carotene, and lycopene from peach palm fruit, particularly proving the post-prandial absorption of the rarely occurring γ-carotene. Since the physical state of carotenoid deposition has been shown to be decisive for carotenoid bioavailability, lipid-dissolved carotenoids in peach palm fruits are expected to be highly bioavailable, however, further studies are required.


Absorption Bioavailability Carotenoids Chromoplast ultrastructure Peach palm Vitamin A 



Fresh weight


Retinol activity equivalents


Transmission electron microscopy


Triglyceride-rich lipoprotein



We thank Erika Rücker (Institute of Botany, Universität Hohenheim) for supporting transmission electron microscopy. J.H. is grateful for a travel grant by the fiat panis Foundation (Ulm, Germany). We also thank the Alexander von Humboldt Foundation (Bonn, Germany) for partially funding this study in the frame of the Research Group Linkage Program.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bauernfeind JC (1972) Carotenoid vitamin A precursors and analogs in foods and feeds. J Agric Food Chem 20:456–473PubMedCrossRefGoogle Scholar
  2. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291PubMedCrossRefPubMedCentralGoogle Scholar
  3. Boehm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226CrossRefGoogle Scholar
  4. Borel P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56:228–240PubMedCrossRefGoogle Scholar
  5. Borel P, Grolier P, Armand M, Partier A, Lafont H, Lairon D, Azais-Braesco V (1996) Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J Lipid Res 37:250–261PubMedGoogle Scholar
  6. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1b., spectroscopy. Birkhäuser Verlag, Basel, Boston, Berlin, pp 13–62Google Scholar
  7. Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 3., Biosynthesis and metabolism. Birkhäuser Verlag, Basel, Boston, Berlin, pp 13–147Google Scholar
  8. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, White WS (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 80:396–403PubMedGoogle Scholar
  9. Burns J, Fraser PD, Bramley PM (2003) Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62:939–947PubMedCrossRefGoogle Scholar
  10. Castenmiller JJM, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18:19–38PubMedCrossRefGoogle Scholar
  11. De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072PubMedCrossRefGoogle Scholar
  12. Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133PubMedCrossRefPubMedCentralGoogle Scholar
  13. Devitt LC, Fanning K, Dietzgen RG, Holton TA (2010) Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J Exp Bot 61:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dias MG, Camões MFGFC, Oliveira L (2009) Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 113:808–815CrossRefGoogle Scholar
  15. FAO/WHO (2001) Vitamin A. Human vitamin and mineral requirements. FAO, Rome, pp 87–101Google Scholar
  16. Ferruzzi MG, Nguyen ML, Sander LC, Rock CL, Schwartz SJ (2001) Analysis of lycopene geometrical isomers in biological microsamples by liquid chromatography with coulometric array detection. J Chromatogr B Biomed Sci Appl 760:289–299PubMedCrossRefGoogle Scholar
  17. Gamlieli-Bonshtein I, Korin E, Cohen S (2002) Selective separation of cis-trans geometrical isomers of β-carotene via CO2 supercritical fluid extraction. Biotechnol Bioeng 80:169–174PubMedCrossRefGoogle Scholar
  18. Garti N, Shevachman M, Shani A (2004) Solubilization of lycopene in jojoba oil microemulsion. JAOCS J Am Oil Chem Soc 81:873–877CrossRefGoogle Scholar
  19. Hansmann P, Sitte P (1982) Composition and molecular structure of chromoplast globules of Viola tricolor. Plant Cell Rep 1:111–114PubMedCrossRefGoogle Scholar
  20. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academy Press, Washington, DCGoogle Scholar
  21. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jatunov S, Quesada S, Díaz C, Murillo E (2010) Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Arch Latinoam Nutr 60:99–104PubMedGoogle Scholar
  23. Kishimoto S, Ohmiya A (2012) Carotenoid isomerase is key determinant of petal color of Calendula officinalis. J Biol Chem 287:276–285PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton SK, Schwartz SJ (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kopec RE, Schweiggert RM, Riedl KM, Carle R, Schwartz SJ (2013) Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma. Rapid Commun Mass Spectrom 27:1393–1402PubMedCrossRefGoogle Scholar
  26. Leterme P, García M-F, Londoño A-M, Rojas M-G, Buldgen A, Souffrant W-B (2005) Chemical composition and nutritive value of peach palm (Bactris gasipaes Kunth) in rats. J Sci Food Agric 85:1505–1512CrossRefGoogle Scholar
  27. Marx M, Schieber A, Carle R (2000) Quantitative determination of carotene stereoisomers in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem 70:403–408CrossRefGoogle Scholar
  28. McLellan MR, Lind LR, Kime RW (1995) Hue angle determinations and statistical analysis for multiquadrant Hunter L, a, b data. J Food Qual 18:235–240CrossRefGoogle Scholar
  29. Monge-Rojas R, Campos H (2011) Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. J Food Compos Anal 24:202–216CrossRefGoogle Scholar
  30. Mortensen A (2005) Analysis of a complex mixture of carotenes from oil palm (Elaeis guineensis) fruit extract. Food Res Int 38:847–853CrossRefGoogle Scholar
  31. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50:728–760PubMedCrossRefGoogle Scholar
  32. Nguyen M, Francis D, Schwartz S (2001) Thermal isomerisation susceptibility of carotenoids in different tomato varieties. J Sci Food Agric 81:910–917CrossRefGoogle Scholar
  33. Nielsen JP (1943) Rapid determination of starch. An index to maturity in starchy vegetables. Ind Eng Chem Anal Ed 15:176–179CrossRefGoogle Scholar
  34. Provesi JG, Dias CO, Amante ER (2011) Changes in carotenoids during processing and storage of pumpkin puree. Food Chem 128:195–202PubMedCrossRefGoogle Scholar
  35. Quesada S, Azofeifa G, Jatunov S, Jiménez G, Navarro L, Gómez G (2011) Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris gasipaes. Emir J Food Agric 23:482–489Google Scholar
  36. Rojas-Garbanzo C, Pérez AM, Bustos-Carmona J, Vaillant F (2011) Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Res Int 44:2377–2384CrossRefGoogle Scholar
  37. Schweiggert RM, Steingass CB, Mora E, Esquivel P, Carle R (2011a) Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Res Int 44:1373–1380CrossRefGoogle Scholar
  38. Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R (2011b) Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031–1044PubMedCrossRefGoogle Scholar
  39. Schweiggert RM, Mezger D, Schimpf F, Steingass CB, Carle R (2012a) Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem 135:2736–2742PubMedCrossRefGoogle Scholar
  40. Schweiggert RM, Steingass CB, Esquivel P, Carle R (2012b) Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles. J Agric Food Chem 60:2577–2585PubMedCrossRefGoogle Scholar
  41. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, Esquivel P, Schwartz SJ, Carle R (2013) Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Br J Nutr 111:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sitte P, Falk H, Liedvogel B (1980) Chromoplasts. In: Czygan FC (ed) Pigments in plants. Gustav Fischer Verlag, Stuttgart, New York, pp 117–148Google Scholar
  43. Straus W (1953) Chromoplast—development of crystalline forms, structure, state of the pigments. Bot Rev 19:147–186CrossRefGoogle Scholar
  44. Surles RL, Weng N, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem 52:3417–3421PubMedCrossRefGoogle Scholar
  45. USDA (2012) USDA national nutrient database for standard reference, Release 25. Nutrient Data Laboratory Home Page. Accessed Aug 2013
  46. Vásquez-Caicedo AL, Sruamsiri P, Carle R, Neidhart S (2005) Accumulation of all-trans-β-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine thai mango cultivars. J Agric Food Chem 53:4827–4835PubMedCrossRefGoogle Scholar
  47. Vásquez-Caicedo AL, Heller A, Neidhart S, Carle R (2006) Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango Cv. ‘Tommy Atkins’. J Agric Food Chem 54:5769–5776PubMedCrossRefGoogle Scholar
  48. Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235PubMedCrossRefGoogle Scholar
  49. Zechmeister L (1949) Stereoisomeric provitamins A. Vitam Horm 7:57–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Judith Hempel
    • 1
  • Evelyn Amrehn
    • 2
  • Silvia Quesada
    • 3
  • Patricia Esquivel
    • 4
  • Víctor M. Jiménez
    • 5
  • Annerose Heller
    • 2
  • Reinhold Carle
    • 1
    • 6
  • Ralf M. Schweiggert
    • 1
    Email author
  1. 1.Institute of Food Science and BiotechnologyHohenheim UniversityStuttgartGermany
  2. 2.Institute of BotanyHohenheim UniversityStuttgartGermany
  3. 3.Department of BiochemistrySchool of Medicine, University of Costa RicaSan PedroCosta Rica
  4. 4.School of Food Technology, University of Costa RicaSan PedroCosta Rica
  5. 5.CIGRAS, University of Costa RicaSan PedroCosta Rica
  6. 6.Biological Science DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations