Planta

, Volume 240, Issue 3, pp 585–598 | Cite as

Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae

  • Takashi Moriyama
  • Kenta Sakurai
  • Kohsuke Sekine
  • Naoki Sato
Original Article

Abstract

Main conclusion

Comprehensive subcellular localization analysis revealed that the subcellular distribution of carbohydrate metabolic pathways in the red algaCyanidioschyzonis essentially identical with that inArabidopsis, except the lack of transaldolase.

In plants, the glycolysis and oxidative pentose phosphate pathways (oxPPP) are located in both cytosol and plastids. However, in algae, particularly red algae, the subcellular localization of enzymes involved in carbon metabolism is unclear. Here, we identified and examined the localization of enzymes related to glycolysis, oxPPP, and tricarboxylic acid (TCA) and Calvin–Benson cycles in the red alga Cyanidioschyzon merolae. A gene encoding transaldolase of the oxPPP was not found in the C. merolae genome, and no transaldolase activity was detected in cellular extracts. The subcellular localization of 65 carbon metabolic enzymes tagged with green fluorescent protein or hemagglutinin was examined in C. merolae cells. As expected, TCA and Calvin–Benson cycle enzymes were localized to mitochondria and plastids, respectively. The analyses also revealed that the cytosol contains the entire glycolytic pathway and partial oxPPP, whereas the plastid contains a partial glycolytic pathway and complete oxPPP, with the exception of transaldolase. Together, these results suggest that the subcellular distribution of carbohydrate metabolic pathways in C. merolae is essentially identical with that reported in the photosynthetic tissue of Arabidopsis thaliana; however, it appears that substrates typically utilized by transaldolase are consumed by glycolytic enzymes in the plastidic oxPPP of C. merolae.

Keywords

Glycolysis Oxidative pentose phosphate pathway Tricarboxylic acid cycle Calvin–Benson cycle Subcellular localization Red algae 

Supplementary material

425_2014_2108_MOESM1_ESM.doc (6.3 mb)
Supplementary material 1 (DOC 6485 kb)

References

  1. Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649–662PubMedCrossRefGoogle Scholar
  2. Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137:460–474PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941PubMedCentralPubMedCrossRefGoogle Scholar
  4. Caillau M, Quick WP (2005) New insights into plant transaldolase. Plant J 43:1–16PubMedCrossRefGoogle Scholar
  5. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333PubMedCrossRefGoogle Scholar
  6. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330PubMedCrossRefGoogle Scholar
  7. Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collén P, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci 110:5247–5252PubMedCentralPubMedCrossRefGoogle Scholar
  8. Dennis DT, Miernyk JA (1982) Compartmentation of nonphotosynthetic carbohydrate metabolism. Annu Rev Plant Physiol 33:27–50Google Scholar
  9. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  10. Giegé P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151PubMedCentralPubMedCrossRefGoogle Scholar
  11. Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142PubMedCrossRefGoogle Scholar
  12. Gruber A, Weber T, Bártulos CR, Vugrinec S, Kroth PG (2009) Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. J Basic Microbiol 49:58–72PubMedCrossRefGoogle Scholar
  13. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509PubMedCrossRefGoogle Scholar
  14. Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R (2008) Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiol Plant 133:211–228PubMedCrossRefGoogle Scholar
  15. Horton P, Park K, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedCentralPubMedCrossRefGoogle Scholar
  16. Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima SY, Misumi O, Kawano S, Kuroiwa T (2013) Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci 110:9583–9588PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jenner HL, Winning BM, Millar AH, Tomlinson KL, Leaver CJ, Hill SA (2001) NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol 126:1139–1149PubMedCentralPubMedCrossRefGoogle Scholar
  18. Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362PubMedCrossRefGoogle Scholar
  20. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426PubMedCentralPubMedCrossRefGoogle Scholar
  21. Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R (2000) Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol 17:213–223PubMedCrossRefGoogle Scholar
  22. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  23. Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M (2001) Characterization of the D-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183:2929–2936PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mhamdi A, Mauve C, Gouia H, Saindrenan P, Hodges M, Noctor G (2010) Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ 33:1112–1123PubMedGoogle Scholar
  25. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671PubMedGoogle Scholar
  26. Moehs CP, Allen PV, Friedman M, Belknap WR (1996) Cloning and expression of transaldolase from potato. Plant Mol Biol 32:447–452PubMedCrossRefGoogle Scholar
  27. Moriyama T, Terasawa K, Fujiwara M, Sato N (2008) Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae. FEBS J 275:2899–2918PubMedCrossRefGoogle Scholar
  28. Moriyama T, Tajima N, Sekine K, Sato N (2014) Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Genome Biol Evol 6:228–237PubMedCentralPubMedCrossRefGoogle Scholar
  29. Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558PubMedCentralPubMedCrossRefGoogle Scholar
  30. Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M (2009) Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5:306PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:843–849PubMedCrossRefGoogle Scholar
  33. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100 %-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120PubMedGoogle Scholar
  35. Ohta N, Sato N, Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res 26:5190–5198PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77PubMedCrossRefGoogle Scholar
  37. Plancke C, Vigeolas H, Höhner R, Roberty S, Emonds-Alt B, Larosa V, Willamme R, Duby F, Onga Dhali D, Thonart P, Hiligsmann S, Franck F, Eppe G, Cardol P, Hippler M, Remacle C (2014) Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J 77:404–417PubMedCrossRefGoogle Scholar
  38. Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048PubMedCentralPubMedCrossRefGoogle Scholar
  39. Racker E (1962) Fructose-6-phosphate phosphoketolase from Acetobacter xylinum. Methods Enzymol 5:276–280CrossRefGoogle Scholar
  40. Samland AK, Baier S, Schürmann M, Inoue T, Huf S, Schneider G, Sprenger GA, Sandalova T (2012) Conservation of structure and mechanism within the transaldolase enzyme family. FEBS J 279:766–778PubMedCrossRefGoogle Scholar
  41. Sato N (2009) Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25:599–605PubMedCrossRefGoogle Scholar
  42. Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017PubMedCentralPubMedCrossRefGoogle Scholar
  43. Schönknecht G, Chen W, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber AP (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210PubMedCrossRefGoogle Scholar
  44. Soderberg T, Alver RC (2004) Transaldolase of Methanocaldococcus jannaschii. Archaea 1:255–262PubMedCentralPubMedCrossRefGoogle Scholar
  45. Susskind BM, Warren LG, Reeves RE (1982) A pathway for the interconversion of hexose and pentose in the parasitic amoeba Entamoeba histolytica. Biochem J 204:191–196PubMedCentralPubMedGoogle Scholar
  46. Toda K, Takano H, Miyagishima S, Kuroiwa H, Kuroiwa T (1998) Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1403:72–84PubMedCrossRefGoogle Scholar
  47. Tronconi MA, Fahnenstich H, Weehler MC, Andreo CS, Flügge U, Drincovich MF, Maurino VG (2008) Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146:1540–1552PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tyra HM, Linka M, Weber APM, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212PubMedCentralPubMedCrossRefGoogle Scholar
  49. Watanabe S, Ohnuma M, Sato J, Yoshikawa H, Tanaka K (2011) Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J Gen Appl Microbiol 57:69–72PubMedCrossRefGoogle Scholar
  50. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3:e1994PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Takashi Moriyama
    • 1
    • 2
  • Kenta Sakurai
    • 1
    • 2
  • Kohsuke Sekine
    • 2
    • 3
  • Naoki Sato
    • 1
    • 2
  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.JST, CRESTTokyoJapan
  3. 3.Division of Life Sciences, Komaba Organization for Educational Excellence, College of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations