Advertisement

Planta

, Volume 239, Issue 5, pp 1129–1137 | Cite as

Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves

  • Atef Gadalla
  • Thomas DehouxEmail author
  • Bertrand Audoin
Emerging Technologies

Abstract

Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE’s ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

Keywords

Probe Beam Cellulose Microfibril Acoustic Phonon Sound Attenuation Longitudinal Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Region Aquitaine and the GIS Advanced Materials in Aquitaine (http://www.ama-materials.com/). We thank A. Boudaoud for fruitful discussions and L. Plawinski for his help in the preparation of the samples.

Supplementary material

425_2014_2045_MOESM1_ESM.gif (166 kb)
Supplementary material 1 (GIF 165 kb)
425_2014_2045_MOESM2_ESM.gif (141 kb)
Supplementary material 2 (GIF 141 kb)

References

  1. Audoin B, Perton M, Chigarev N, Rossignol C (2008) Diffraction of picosecond bulk longitudinal and shear waves in micron thick films; application to their nondestructive evaluation. Ultrasonics 48:574–577PubMedCrossRefGoogle Scholar
  2. Audoin B, Rossignol C, Chigarev N, Ducousso M, Forget G, Guillemot F, Durrieu MC (2010) Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale. Ultrasonics 50:202–207PubMedCrossRefGoogle Scholar
  3. Auld BA (1990) Acoustic fields and waves in solids, vol I. Wiley, New YorkGoogle Scholar
  4. Bryan AK, Goranov A, Amon A, Manalis SR (2010) Measurement of mass, density, and volume during the cell cycle of yeast. Proc Natl Acad Sci 107:999–1004PubMedCentralPubMedCrossRefGoogle Scholar
  5. Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93:1391–1401PubMedCrossRefGoogle Scholar
  6. Burgert I, Fratzl P (2007) The expanding cell. In: Verbelen J-P, Vissenberg K (eds) Plant cell monographs, vol 6. Springer, Berlin, pp 191–215Google Scholar
  7. Cave ID (1969) The longitudinal young’s modulus of pinus radiata. Wood Sci Technol 3:40–48CrossRefGoogle Scholar
  8. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23PubMedCrossRefGoogle Scholar
  9. Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217:283–289PubMedGoogle Scholar
  10. Dehoux T, Audoin B (2012) Non-invasive optoacoustic probing of the density and stiffness of single biological cells. J Appl Phys 112:124702CrossRefGoogle Scholar
  11. Dehoux T, Chigarev N, Rossignol C, Audoin B (2007) Three-dimensional elasto-optic interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics. Phys Rev B 76:024311CrossRefGoogle Scholar
  12. Dehoux T, Chigarev N, Rossignol C, Audoin B (2008) Effect of lateral electronic diffusion on acoustic diffraction in picosecond ultrasonics. Phys Rev B 77:214307CrossRefGoogle Scholar
  13. Dehoux T, Kelf TA, Tomoda M, Matsuda O, Wright OB, Ueno K, Nishijima Y, Juodkazis S, Misawa H, Tournat V, Gusev VE (2009) Vibrations of microspheres probed with ultrashort optical pulses. Opt Lett 34:3740–3742PubMedCrossRefGoogle Scholar
  14. Dehoux T, Tsapis N, Audoin B (2012) Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves. Soft Matter 8:2586–2589CrossRefGoogle Scholar
  15. Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRefGoogle Scholar
  16. Ducousso M, Dehoux T, Audoin B, Zouani O, Chollet C, Durrieu MC (2011) Picosecond ultrasonics in single cells: interface step motion for thin animal cells and brillouin scattering for thick vegetal cells. J Phys Conf Ser 269:012024CrossRefGoogle Scholar
  17. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102PubMedCrossRefGoogle Scholar
  18. Ferry JD (1970) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  19. Guillet Y, Rossignol C, Audoin B, Calbris G, Ravaine S (2009) Optoacoustic response of a single submicronic gold particle revealed by the picosecond ultrasonics technique. Appl Phys Lett 95:061909CrossRefGoogle Scholar
  20. Ha MA, Apperly DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115:593–598PubMedCentralPubMedGoogle Scholar
  21. Hansen SL, Ray PM, Karlsson AO, Jørgensen B, Borkhardt B, Petersen BL, Ulvskov P (2011) Mechanical properties of plant cell walls probed by relaxation spectra. Plant Physiol 155:246–258PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hayot CM, Forouzesh E, Goel A, Avramova Z, Turner JA (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Bot 63:2525–2540PubMedCentralPubMedCrossRefGoogle Scholar
  23. Higuet J, Valier-Brasier T, Dehoux T, Audoin B (2011) Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves. Rev Sci Instrum 82:114905PubMedCrossRefGoogle Scholar
  24. Jäger A, Hofstetter K, Buksnowitz C, Gindl-Altmutter W, Konnerth J (2011) Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Compos A 42:2101–2109CrossRefGoogle Scholar
  25. Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci 100:11783–11788PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kerstens S, Decraemer WF, Verbelen JP (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–385PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kittel C (1986) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  28. Landau LD, Lifchitz EM (1969) Electrodynamics of continuous media. Mir, MoscowGoogle Scholar
  29. Lin LS, Yuen HK, Varner JE (1991) Differential scanning calorimetry of plant cell walls. Proc Natl Acad Sci 88:2241–2243PubMedCentralPubMedCrossRefGoogle Scholar
  30. Litovitz TA, Davis CM (1965) Physical acoustics. Academic, New YorkGoogle Scholar
  31. Liu D, Kuhlmey B, Smith P, Day D, Faulkner C, Overall R (2008) Reflection across plant cell boundaries in confocal laser scanning microscopy. J Microsc 231:349–357PubMedCrossRefGoogle Scholar
  32. Maris HJ (1998) Picosecond ultrasonics. Sci Am 278:64–67CrossRefGoogle Scholar
  33. Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in arabidopsis using atomic force microscopy. Plant J 67:1116–1123PubMedCrossRefGoogle Scholar
  34. Pezeril T, Klieber C, Andrieu S, Nelson KA (2009) Optical generation of gigahertz—frequency shear acoustic waves in liquid glycerol. Phys Rev Lett 102:107402PubMedCrossRefGoogle Scholar
  35. Rapusas R, Driscoll R (1995) Thermophysical properties of fresh and dried white onion slices. J Food Eng 24:149–164CrossRefGoogle Scholar
  36. Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79:2173–2184CrossRefGoogle Scholar
  37. Rossignol C, Chigarev N, Ducousso M, Audoin B, Forget G, Guillemot F, Durrieu MC (2008) In Vitro picosecond ultrasonics in a single cell. Appl Phys Lett 93:123901CrossRefGoogle Scholar
  38. Routier-Kierzkowska AL, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522PubMedCentralPubMedCrossRefGoogle Scholar
  39. Scarcelli G, Yun SH (2008) Confocal brillouin microscopy for three-dimensional mechanical imaging. Nat Photon 2:39–43CrossRefGoogle Scholar
  40. Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425PubMedCrossRefGoogle Scholar
  41. Ségur D, Guillet Y, Audoin B (2010) Intrinsic geometric scattering probed by picosecond optoacoustics in a cylindrical cavity: application to acoustic and optical characterizations of a single micron carbon fiber. Appl Phys Lett 97:031901CrossRefGoogle Scholar
  42. Shelton L, Yang F, Ford W, Maris H (2005) Picosecond ultrasonic measurement of the velocity of phonons in water. Phys Status Solidi B 242:1379–1382CrossRefGoogle Scholar
  43. Surovtsev NV, Wiedersich JAH, Novikov VN, Rössler E, Sokolov AP (1998) Light-scattering spectra of fast relaxation in glasses. Phys Rev B 58:14888CrossRefGoogle Scholar
  44. Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192PubMedCrossRefGoogle Scholar
  45. Thompson D (2001) Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. J Exp Bot 52:1291–1301PubMedCrossRefGoogle Scholar
  46. Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285PubMedCrossRefGoogle Scholar
  47. Thompson DS (2008) Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function. Ann Bot 101:203–211PubMedCentralPubMedCrossRefGoogle Scholar
  48. Thomsen C, Strait J, Vardeny Z, Maris HJ, Tauc J, Hauser JJ (1984) Coherent phonon generation and detection by picosecond light pulses. Phys Rev Lett 53:989–992CrossRefGoogle Scholar
  49. Thomsen C, Grahn HT, Maris HJ, Tauc J (1986) Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 34:4129–4138CrossRefGoogle Scholar
  50. Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117:2159–2167PubMedCrossRefGoogle Scholar
  51. Vanstreels E, Alamar M, Verlinden B, Enninghorst A, Loodts J, Tijskens E, Ramon H, Nicolaï B (2005) Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol 37:163–173CrossRefGoogle Scholar
  52. Verdier C, Etienne J, Duperray A, Preziosi L (2009) Review: rheological properties of biological materials. CR Phys 10:790–811CrossRefGoogle Scholar
  53. Waterman H (1969) On the propagation of elastic waves through composite media ii. Rheol Acta 8:22–38CrossRefGoogle Scholar
  54. Whitney SE, Gothard MG, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–664PubMedCentralPubMedCrossRefGoogle Scholar
  55. Wilson RH, Smith AC, Kacurakova M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–406PubMedCentralPubMedCrossRefGoogle Scholar
  56. Wright OB, Perrin B, Matsuda O, Gusev VE (2008) Optical excitation and detection of picosecond acoustic pulses in liquid mercury. Phys Rev B 78:024303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Atef Gadalla
    • 1
    • 2
  • Thomas Dehoux
    • 1
    • 2
    Email author
  • Bertrand Audoin
    • 1
    • 2
  1. 1.University Bordeaux, I2M, UMR 5295TalenceFrance
  2. 2.CNRS, I2M, UMR 5295TalenceFrance

Personalised recommendations