Advertisement

Planta

, Volume 239, Issue 4, pp 817–830 | Cite as

Glutathione and transpiration as key factors conditioning oxidative stress in Arabidopsis thaliana exposed to uranium

  • Iker Aranjuelo
  • Fany Doustaly
  • Jana Cela
  • Rosa Porcel
  • Maren Müller
  • Ricardo Aroca
  • Sergi Munné-Bosch
  • Jacques Bourguignon
Original Article

Abstract

Although oxidative stress has been previously described in plants exposed to uranium (U), some uncertainty remains about the role of glutathione and tocopherol availability in the different responsiveness of plants to photo-oxidative damage. Moreover, in most cases, little consideration is given to the role of water transport in shoot heavy metal accumulation. Here, we investigated the effect of uranyl nitrate exposure (50 μM) on PSII and parameters involved in water transport (leaf transpiration and aquaporin gene expression) of Arabidopsis wild type (WT) and mutant plants that are deficient in tocopherol (vte1: null α/γ-tocopherol and vte4: null α-tocopherol) and glutathione biosynthesis (high content: cad1.3 and low content: cad2.1). We show how U exposure induced photosynthetic inhibition that entailed an electron sink/source imbalance that caused PSII photoinhibition in the mutants. The WT was the only line where U did not damage PSII. The increase in energy thermal dissipation observed in all the plants exposed to U did not avoid photo-oxidative damage of mutants. The maintenance of control of glutathione and malondialdehyde contents probed to be target points for the overcoming of photoinhibition in the WT. The relationship between leaf U content and leaf transpiration confirmed the relevance of water transport in heavy metals partitioning and accumulation in leaves, with the consequent implication of susceptibility to oxidative stress.

Keywords

Arabidopsis Chlorophyll fluorescence Photosynthesis Plant hormones Transpiration Tocopherol Uranium 

Notes

Acknowledgments

This work has been funded by the Région Rhône-Alpes CMIRA program and by the CEA program of Toxicology. RA and RP were supported by Ministry of Economy and Competitiveness of Spain (AGL2011-25403 project). The authors would like to thank Serge Berthet for his help with the ICP-MS measurements.

Supplementary material

425_2013_2014_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 42 kb)

References

  1. Araus JL, Villegas D, Aparicio N, García del Moral LF, El Hani S, Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43:170–180CrossRefGoogle Scholar
  2. Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57PubMedCrossRefGoogle Scholar
  3. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639CrossRefGoogle Scholar
  4. Bartoli F, Coinchelin D, Robin C, Echevarria G (2012) Impact of active transport and transpiration on nickel and cadmium accumulation in the leaves of the Ni-hyperaccumulator Leptoplax emarginata: a biophysical approach. Plant Soil 350:99–115CrossRefGoogle Scholar
  5. Battarbee R, Anderson N, Appleby P, Flower RG, Fritz S, Haworth E, Higgit S, Jones V, Kreiser A, Munro MA, Natkanski J, Oldfield F, Patrick ST, Richardson N, Rippey B, Stevenson AC (1988) Lake acidification in the United Kingdom ENSIS, LondonGoogle Scholar
  6. Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ-rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chaudhary N, Khurana P (2009) Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Sci 177:479–491CrossRefGoogle Scholar
  8. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162PubMedCentralPubMedCrossRefGoogle Scholar
  10. Claus J, Bohmann A, Chavarría-Krauser A (2013) Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Ann Bot 112:369–380PubMedCrossRefGoogle Scholar
  11. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  12. Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257PubMedGoogle Scholar
  13. European Environment Agency (1999) Environment in the European Union at the turn of the century”. pp 446, ISBN 92-9157-202-0Google Scholar
  14. Fahrenholzt SR, Doleiden FH, Tozzolo AM, Lamola AA (1974) On the quenching of singlet oxygen by alpha-tocopherol. Photochem Photobiol 20:505–509CrossRefGoogle Scholar
  15. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566PubMedCrossRefGoogle Scholar
  16. Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant J 48:427–439Google Scholar
  17. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedCentralPubMedCrossRefGoogle Scholar
  18. Galmés J, Abadía A, Cifre J, Medrano H, Flexas J (2007) Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiol Plantarum 130:495–510CrossRefGoogle Scholar
  19. Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436PubMedCentralPubMedCrossRefGoogle Scholar
  20. Howden R, Andersen CR, Goldsbrough PB, Cobbett CC (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073PubMedCentralPubMedCrossRefGoogle Scholar
  21. Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI (2013) Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid–light-harvesting complex II model membranes. Plant Cell 25:2155–2170PubMedCrossRefGoogle Scholar
  22. Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37CrossRefGoogle Scholar
  23. Kay R, Chau A, Daly M (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plants genes. Science 236:1299–1302PubMedCrossRefGoogle Scholar
  24. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology. Plant cell membranes. Academic Press, USA, pp 350–382CrossRefGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  28. López-Millán A, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385CrossRefGoogle Scholar
  29. Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427PubMedCrossRefGoogle Scholar
  30. Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Biol 48:399–429CrossRefGoogle Scholar
  31. May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 321:649–667Google Scholar
  32. Mène-Saffrané L, Jones AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci USA 107:17815–17820PubMedCentralPubMedCrossRefGoogle Scholar
  33. Minotti G, Aust D (1987) The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 262:1098–1104PubMedGoogle Scholar
  34. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  35. Morillon R, Chrispeels MJ (2001) The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Natl Acad Sci USA 98:14138–14143PubMedCentralPubMedCrossRefGoogle Scholar
  36. Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37PubMedCentralPubMedCrossRefGoogle Scholar
  37. Munné-Bosch S (2005) Linking tocopherols with cellular signaling in plants. New Phytol 166:363–366PubMedCrossRefGoogle Scholar
  38. Munné-Bosch S (2007) α-Tocopherol: a multifaceted molecule in plants. Vitam Horm 76:375–392PubMedCrossRefGoogle Scholar
  39. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57CrossRefGoogle Scholar
  40. Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Cela J, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145PubMedCrossRefGoogle Scholar
  41. Neves MO, Abreu MM, Figueiredo V (2012) Uranium in vegetable foodstuffs: should residents near the Cunha Baixa uranium mine site (Central Northern Portugal) be concerned? Environ Geochem Health 34:181–189PubMedCrossRefGoogle Scholar
  42. Niinemets U, Kull O (2001) Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Tree Physiol 21:899–914PubMedCrossRefGoogle Scholar
  43. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  44. Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci U S A 99:12495–12500PubMedCentralPubMedCrossRefGoogle Scholar
  45. Przedpelska-Wasowicz EM, Wierzbicka M (2011) Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 248:663–671PubMedCentralPubMedCrossRefGoogle Scholar
  46. Renkema H, Koopmans A, Kersbergen L, Kikkert J, Hale B, Berkelaar E (2012) The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil 354:239–250CrossRefGoogle Scholar
  47. Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam Toxicol 146:53–89PubMedGoogle Scholar
  48. Ricciarelli R, Zingg J, Azzi A (2001) Vitamin E 80th anniversary: a double life, not only fighting radicals. IUBMB Life 52:71–76PubMedCrossRefGoogle Scholar
  49. Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100PubMedCrossRefGoogle Scholar
  50. Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, Matsumoto T, Kitagawa Y (2011) Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant Cell Environ 34:1150–1163PubMedCrossRefGoogle Scholar
  51. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  52. Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345CrossRefGoogle Scholar
  53. Szymanska R, Kruk J (2010) Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol 5:537–545CrossRefGoogle Scholar
  54. Turcsányi E, Lyons T, Plochl M, Barnes J (2000) Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.). J Exp Bot 51:901–910PubMedCrossRefGoogle Scholar
  55. Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35:1077–1083Google Scholar
  56. Vanhoudt N, Vandenhove H, Smeets K, Remans T, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A (2008) Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. Plant Physiol Biochem 46:987–996PubMedCrossRefGoogle Scholar
  57. Vanhoudt N, Cuypers A, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Havaux M, Wannijn J, Van Hees M, Vangronsveld J, Vandenhove H (2011a) Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions. J Environ Radioact 102:638–645PubMedCrossRefGoogle Scholar
  58. Vanhoudt N, Vandenhove H, Horemans N, Bello DM, Van Hees M, Wannijn J, Carleer R, Vangronsveld J, Cuypers A (2011b) Uranium induced effects on development and mineral nutrition of Arabidopsis Thaliana. J Plant Nutr 34:1940–1956CrossRefGoogle Scholar
  59. Vanhoudt N, Vandenhove H, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Wannijn J, Van Hees M, Vangronsveld J, Cuypers A (2011c) Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots. J Environ Radioact 102:630–637PubMedCrossRefGoogle Scholar
  60. Verhoeven AS, Adams WW III, Demmig-Adams B, Croce R, Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiol 120:727–737PubMedCentralPubMedCrossRefGoogle Scholar
  61. Viehweger K, Geipel G, Bernhard G (2011) Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U. Biometals 24:1197–1204PubMedCrossRefGoogle Scholar
  62. Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663PubMedCrossRefGoogle Scholar
  63. Villiers F, Jourdain A, Bastien O, Leonhardt N, Fujioka S, Tichtincky G, Parcy F, Bourguignon J, Hugouvieux V (2012) Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. J Exp Bot 63:1185–1200PubMedCrossRefGoogle Scholar
  64. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387CrossRefGoogle Scholar
  65. Wedepohl HK (1995) The composition of the continental crust. Geochimica et Cosmochim. Acta 59:1217–1232Google Scholar
  66. Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–437PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iker Aranjuelo
    • 1
    • 2
    • 3
    • 4
    • 5
  • Fany Doustaly
    • 2
    • 3
    • 4
    • 5
  • Jana Cela
    • 6
  • Rosa Porcel
    • 7
  • Maren Müller
    • 6
  • Ricardo Aroca
    • 7
  • Sergi Munné-Bosch
    • 6
  • Jacques Bourguignon
    • 2
    • 3
    • 4
    • 5
  1. 1.Instituto de AgrobiotecnologíaUniversidad Pública de Navarra-CSIC-Gobierno de NavarraMutilva BajaSpain
  2. 2.CEA, iRTSV, Laboratoire Physiologie Cellulaire Végétale (PCV), CEA, CNRS (UMR 5168) UJF, INRA (USC1359), CEA-GrenobleGrenoble Cedex 9France
  3. 3.PCVUniversité Grenoble AlpesGrenobleFrance
  4. 4.CNRS, UMR5168, PCVGrenobleFrance
  5. 5.INRA, USC1359, PCVGrenobleFrance
  6. 6.Unitat de Fisologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  7. 7.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín (CSIC)GranadaSpain

Personalised recommendations