, Volume 239, Issue 2, pp 357–366 | Cite as

Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana reveals a role for this protein in stomatal and mesophyll conductance of CO2 under standard and salt-stress conditions

  • Nir Sade
  • Alexander Gallé
  • Jaume Flexas
  • Stephen Lerner
  • Gadi Peleg
  • Adi Yaaran
  • Menachem Moshelion
Original Article


The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO2, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO2 channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A N), mesophyll CO2 conductance (g m) and stomatal conductance (g s) and, under stress, increased root hydraulic conductivity (L pr) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A N and g m. Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants’ stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.


Arabidopsis Mesophyll conductance Nicotiana tabacum aquaporin 1 Salt stress Stomatal conductance Tissue-specific expression 



Net photosynthesis




Artificial xylem sap


Substomatal CO2 concentration


Fructose 1,6-bisphosphatase


Leaf mesophyll conductance for CO2


Stomatal conductance


Leaf hydraulic conductivity


Root hydraulic conductivity




Guard cell


Green fluorescent protein


Quantitative PCR



This study was supported by a grant from the Rehovot-Hohenheim partnership program and the Israel Science Foundation, Jerusalem (ISF; Grant # 1311/12) to MM. JF acknowledges the support of Plan Nacional (Spain) project grant MECOME (BFU2011-23294). We thank Dr. Orit Edelbaum and Professor Shmuel Wolf (Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel), Dr. Einat Sadot and Dr. Mohamad Abu-Abied (Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel), Professor Yuval Eshed (Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel) and Professor Ralf Kaldenhoff (Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Darmstadt, Germany) for supplying the different constructs and plant materials. Eduard Belausov (Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel) helped with microscopy imaging.

Supplementary material

425_2013_1988_MOESM1_ESM.pptx (70 kb)
Supplementary material 1 (PPTX 70 kb)


  1. Ache P, Bauer H, Kollist H, Al-Rasheid KAS, Lautner S, Hartung W, Hedrich R (2010) Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J 62:1072–1082PubMedGoogle Scholar
  2. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression drought stress regulation of aquaporins. Plant Mol Biol 59:469–484PubMedCrossRefGoogle Scholar
  3. Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance implications for the determination of Rubisco enzyme kinetics for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998PubMedCentralPubMedCrossRefGoogle Scholar
  4. Besford RT, Ludwig LJ, Withers AC (1990) The greenhouse-effect—acclimation of tomato plants growing in high CO2, photosynthesis ribulose-1,5-bisphosphate carboxylase protein. J Exp Bot 41:925–931CrossRefGoogle Scholar
  5. Brown NJ, Palmer B, Stanley S, Hajaj H, Janacek S, Quick WP, Trenkam S, Fernie A, Maurino V, Hibberd JM (2010) C4 acid decarboxylases required for C4 photosynthesis are active in the mid-veins of the C3 species Arabidopsis thaliana and are important in sugar and amino acid metabolism. Plant J 61:122–133PubMedCrossRefGoogle Scholar
  6. Chueca A, Sahrawy M, Pagano EA, Gorge JL (2002) Chloroplast fructose-1,6-bisphosphatase: structure and function. Photosynth Res 74:235–249PubMedCrossRefGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  8. Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260PubMedCrossRefGoogle Scholar
  9. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell Environ 27:137–153CrossRefGoogle Scholar
  10. Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346PubMedCentralPubMedGoogle Scholar
  11. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90PubMedCrossRefGoogle Scholar
  12. Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439PubMedCrossRefGoogle Scholar
  13. Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298PubMedCrossRefGoogle Scholar
  14. Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge future prospects. Plant Cell Environ 31:602–621PubMedCrossRefGoogle Scholar
  15. Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriqui M, Diaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Galle A, Galmes J, Kodama N, Medrano H, Niinemets U, Peguero-Pina JJ, Pou A, Ribas-Carbo M, Tomas M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84PubMedCrossRefGoogle Scholar
  16. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  17. Harley PC, Loreto F, Dimarco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436PubMedCentralPubMedCrossRefGoogle Scholar
  18. Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804PubMedCrossRefGoogle Scholar
  19. Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454PubMedCrossRefGoogle Scholar
  20. Janacek SH, Trenkamp S, Palmer B, Brown NJ, Parsley K, Stanley S, Astley HM, Rolfe SA, Paul Quick W, Fernie AR, Hibberd JM (2007) Photosynthesis in cells around veins of the C3 plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Plant J 59:469–484Google Scholar
  21. Kaldenhoff R, Bertl A, Otto B, Moshelion M, Uehlein N (2007) Characterization of plant aquaporins. Methods Enzymol 428:505–531PubMedCrossRefGoogle Scholar
  22. Karimi M, Inzé D, Depicker A (2002) Gateway vectors for agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195PubMedCrossRefGoogle Scholar
  23. Kelly G, David-Schwartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D (2012) The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. Plant Physiol 159:47–51PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D (2013) Hexokinase mediates stomatal closure. Plant J 75:977–988PubMedCrossRefGoogle Scholar
  25. Kimball BA, Idso SB (1983) Increasing atmospheric CO2—effects on crop yield, water-use and climate. Agric Water Manage 7:55–72CrossRefGoogle Scholar
  26. Li J, Zhou JM, Duan ZQ (2007) Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios. J Environ Sci China 19:1100–1107PubMedCrossRefGoogle Scholar
  27. Lloyd JC, Raines CA, John UP, Dyer TA (1991) The chloroplast fbpase gene of wheat—structure and expression of the promoter in photosynthetic meristematic cells of transgenic tobacco plants. Mol Gen Genet 225:209–216PubMedCrossRefGoogle Scholar
  28. Loreto F, Harley PC, Dimarco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by 3 different methods. Plant Physiol 98:1437–1443PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–812PubMedCrossRefGoogle Scholar
  30. Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110PubMedCentralPubMedCrossRefGoogle Scholar
  31. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefGoogle Scholar
  32. Mott KA (2009) Opinion: stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ 32:1479–1486PubMedCrossRefGoogle Scholar
  33. Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31:1299–1306PubMedCrossRefGoogle Scholar
  34. Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172PubMedCrossRefGoogle Scholar
  35. Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260PubMedCrossRefGoogle Scholar
  36. Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013) The dual effect of abscisic acid on stomata. New Phytol 197:65–72PubMedCrossRefGoogle Scholar
  37. Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28:455–464PubMedCrossRefGoogle Scholar
  38. Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152:1418–1430PubMedCentralPubMedCrossRefGoogle Scholar
  39. Prado K, Boursiac Y, Tournaire-Roux C, Monneuse JM, Postaire O, Da Ines O, Schaffner AR, Hem S, Santoni V, Maurel C (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039PubMedCrossRefGoogle Scholar
  40. Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity and yield production under salt stress. Plant Physiol 152:245–254PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040PubMedCrossRefGoogle Scholar
  42. Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67:72–80PubMedCrossRefGoogle Scholar
  43. Siefritz F, Biela A, Eckert M, Otto B, Uehlein N, Kaldenhoff R (2001) The tobacco plasma membrane aquaporin NtAQP1. J Exp Bot 52:1953–1957PubMedCrossRefGoogle Scholar
  44. Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869PubMedCentralPubMedCrossRefGoogle Scholar
  45. Terashima I, Ono K (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol 43:70–78PubMedCrossRefGoogle Scholar
  46. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water solute channels with expanding roles. Plant Cell Environ 25:173–194PubMedCrossRefGoogle Scholar
  47. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737PubMedCrossRefGoogle Scholar
  48. Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657PubMedCentralPubMedCrossRefGoogle Scholar
  49. Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35:1077–1083PubMedCrossRefGoogle Scholar
  50. Villar R, Held AA, Merino J (1995) Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species. Plant Physiol 107:421–427PubMedCentralPubMedGoogle Scholar
  51. Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type flacca tomato leaves: a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709PubMedCentralPubMedCrossRefGoogle Scholar
  52. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nir Sade
    • 1
  • Alexander Gallé
    • 2
    • 3
  • Jaume Flexas
    • 2
  • Stephen Lerner
    • 1
  • Gadi Peleg
    • 1
  • Adi Yaaran
    • 1
  • Menachem Moshelion
    • 1
  1. 1.Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Laboratori de Fisiologia Vegetal, Grup de Biologia de les Plantes en Condicions MediterràniesUniversitat de les Illes BalearsPalma, BalearsSpain
  3. 3.Bayer Crop Science NVGhentBelgium

Personalised recommendations