, Volume 238, Issue 2, pp 397–413 | Cite as

Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue

  • Teresa Delgado-Goñi
  • Sonia Campo
  • Juana Martín-Sitjar
  • Miquel E. Cabañas
  • Blanca San Segundo
  • Carles Arús
Emerging Technologies


In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4–2.5 g of glucose; and 0.73–2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.


HR-MAS NMR Sugar quantification Melon mesocarp Enzymatic analysis Differences vs averages method 



Coefficients of repeatability


Coefficient of variation


Deuterium oxide


Focused microwave fixation


Fresh weight


Gas chromatography


Proton NMR


High-performance liquid chromatography


High-resolution magic angle spinning


Limits of agreement


Mass spectrometry


Nuclear magnetic resonance


Quantitative NMR


Signal-to-noise ratio


Longitudinal relaxation time


Recycling time


Wilcoxon signed-rank test statistic



We are grateful to Drs. P. Puigdomènech and J. García-Mas for critical reading of this manuscript and to Llorenç Badiella (Servei d’Estadistica, UAB) for initial advice on the statistical analysis of data. This work was funded by grants from the Spanish Ministerio de Ciencia e Innovación (SAF2008-03323 and SAF2011-23870 to CA) and the Ministerio de Economia y Competitividad (BIO2009-08719 and BIO2012-32838 to BSS). CIBER-BBN is an initiative of Instituto de Salud Carlos III, Spain, which is co-funded with EU-funds.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

425_2013_1924_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1810 kb)


  1. Adams MA, Chen Z, Landman P, Colmer TD (1999) Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 266:77–84PubMedCrossRefGoogle Scholar
  2. Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. The Statistician 32:307–3017CrossRefGoogle Scholar
  3. Angyal SJ (1994) The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydr Res 263:1–11CrossRefGoogle Scholar
  4. Barclay T, Ginic-Markovic M, Johnston MR, Cooper P, Petrovsky N (2012) Observation of the keto tautomer of d-fructose in D(2)O using (1)H NMR spectroscopy. Carbohydr Res 347:136–141PubMedCrossRefGoogle Scholar
  5. Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2012) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032CrossRefGoogle Scholar
  6. Biais B, Allwood JW, Deborde C, Xu Y, Maucourt M, Beauvoit B, Dunn WB, Jacob D, Goodacre R, Rolin D, Moing A (2009) 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Anal Chem 81:2884–2894PubMedCrossRefGoogle Scholar
  7. Biological Magnetic Resonance Data (2012) Bank.
  8. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160PubMedCrossRefGoogle Scholar
  9. Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582PubMedCrossRefGoogle Scholar
  10. Boogaart AB (1995) The use of signal processing algorithms to obtain biochemically relevant parameters from magnetic resonance data sets. PhD thesis, St. George’s Hospital Medical SchoolGoogle Scholar
  11. Broberg A, Kenne L (2000) Use of high-resolution magic angle spinning nuclear magnetic resonance spectroscopy for in situ studies of low-molecular-mass compounds in red algae. Anal Biochem 284:367–374PubMedCrossRefGoogle Scholar
  12. Burger Y, Schaffer AA (2007) The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. Soc Hort Sci 132:704–712Google Scholar
  13. Candiota AP, Majos C, Bassols A, Cabanas ME, Acebes JJ, Quintero MR, Arus C (2004) Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules. Magn Reson Mater Phy 17:36–46CrossRefGoogle Scholar
  14. Carstensen B (2010) Comparing clinical measurement methods. A practical guide. Wiley, SingaporeCrossRefGoogle Scholar
  15. Carstensen B, Gurrin L, Ekstrom C (2012) MethComp: functions for analysis of method comparison studies. R package version 1.15.
  16. Cazor A, Deborde C, Moing A, Rolin D, This H (2006) Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J Agric Food Chem 54:4681–4686PubMedCrossRefGoogle Scholar
  17. Chou HM, Bundock N, Rolfe SA, Scholes JD (2000) Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99–113PubMedCrossRefGoogle Scholar
  18. Claridge TDW (2009) High-resolution NMR techniques in organic chemistry. Elsevier, AmsterdamGoogle Scholar
  19. Cuny M, Vigneau E, Le Gall G, Colquhoun I, Lees M, Rutledge DN (2008) Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Anal Bioanal Chem 390:419–427PubMedCrossRefGoogle Scholar
  20. Davila M, Candiota AP, Pumarola M, Arus C (2012) Minimization of spectral pattern changes during HRMAS experiments at 37 degrees celsius by prior focused microwave irradiation. Magn Reson Mater Phy 25:401–410CrossRefGoogle Scholar
  21. R, Development Core Team (2012a) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  22. Dewe W (2009) Review of statistical methodologies used to compare (bio)assays. J Chromatogr B Analyt Technol Biomed Life Sci 877:2208–2213PubMedCrossRefGoogle Scholar
  23. Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148PubMedCrossRefGoogle Scholar
  24. Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219Google Scholar
  25. Finney DJ (2006) Calibration guidelines challenge outlier practices. Am Stat 60:309–314CrossRefGoogle Scholar
  26. Frye JS, Maciel GE (1982) Setting the magic angle using a quadrupolar nuclide. J Magn Reson 48:125–131Google Scholar
  27. Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. J Agron Crop Sci 195:77–88CrossRefGoogle Scholar
  28. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877PubMedCrossRefGoogle Scholar
  29. Gil AM, Duarte IF (2008) High-Resolution Magic Angle Spinning NMR Spectroscopy of Fruits and Vegetables. In: Graham AW (ed) Modern Magnetic Resonance, Springer, pp 1765-1768Google Scholar
  30. Gil AM, Duarte IF, Delgadillo I, Colquhoun IJ, Casuscelli F, Humpfer E, Spraul M (2000) Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy. J Agric Food Chem 48:1524–1536PubMedCrossRefGoogle Scholar
  31. Gonzalez VM, Garcia-Mas J, Arus P, Puigdomenech P (2010) Generation of a BAC-based physical map of the melon genome. BMC Genomics 11:339PubMedCrossRefGoogle Scholar
  32. Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306PubMedCrossRefGoogle Scholar
  33. Hendrix DL, Peelen KK (1987) Artifacts in the analysis of plant tissues for soluble carbohydrates. Crop Sci 27:710–715CrossRefGoogle Scholar
  34. Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803PubMedGoogle Scholar
  35. Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534PubMedCrossRefGoogle Scholar
  36. Human Metabolome Database (2012)
  37. Jahren AH, Saudek C, Yeung EH, Kao WH, Kraft RA, Caballero B (2006) An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am J Clin Nutr 84:1380–1384PubMedGoogle Scholar
  38. Kanamatsu T, Tsukada Y (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C] glucose with or without ammonium acetate. Brain Res 841:11–19PubMedCrossRefGoogle Scholar
  39. Kolayli S, Kara M, Tezcan F, Erim FB, Sahin H, Ulusoy E, Aliyazicioglu R (2010) Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons. J Agric Food Chem 58:9764–9769PubMedCrossRefGoogle Scholar
  40. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265PubMedCrossRefGoogle Scholar
  41. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG (2008) 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc 3:1001–1012PubMedCrossRefGoogle Scholar
  42. Lindon JC, Beckonert OP, Holmes E, Nicholson JK (2009) High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog Nuc Magn Reson Spectr 55:79–100CrossRefGoogle Scholar
  43. Lingle SE, Dunlap JR (1987) Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 84:386–389PubMedCrossRefGoogle Scholar
  44. Ludbrook J (2008) Outlying observations and missing values: how should they be handled? Clin Exp Pharmacol Physiol 35:670–678PubMedCrossRefGoogle Scholar
  45. Maestrelli A, Lo Scalzo R, Lupi D, Bertolo G, Torreggiani D (2001) Partial removal of water before freezing: cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). J Food Eng 49:255–260CrossRefGoogle Scholar
  46. Moing A, Maucourt M, Renaud C, Gaudillère M, Brouquisse R, Lebouteiller B, Gousset-Dupont A, Vidal J, Granot D, Denoyes-Rothan B, Lerceteau-Köhler E, Rolin D (2004) Quantitative metabolic profiling by 1-dimensional 1H-NMR analyses: application to plant genetics and functional genomics. Plant Biol 31:889–902Google Scholar
  47. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758PubMedCrossRefGoogle Scholar
  48. Murillo I, Roca R, Bortolotti C, San Segundo B (2003) Engineering photoassimilate partitioning in tobacco plants improves growth and productivity and provides pathogen resistance. Plant J 36:330–341PubMedCrossRefGoogle Scholar
  49. Ni QW, Eads TM (1993) Liquid-phase composition of intact fruit tissue measured by high-resolution proton NMR. J Agric Food Chem 41:1026–1034CrossRefGoogle Scholar
  50. Nicholls AW, Mortishire-Smith RJ (2001) Temperature calibration of a high-resolution magic-angle spinning NMR probe for analysis of tissue samples. Magn Reson Chem 39:773–776CrossRefGoogle Scholar
  51. Patzold R, Bruckner H (2005) Mass spectrometric detection and formation of d-amino acids in processed plant saps, syrups, and fruit juice concentrates. J Agric Food Chem 53:9722–9729PubMedCrossRefGoogle Scholar
  52. Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149PubMedCrossRefGoogle Scholar
  53. Pauli GF, Jaki BU, Lankin DC (2012) Quantitative 1H NMR: development and potential of an analytical method: an update. J Nat Prod 75:834–851PubMedCrossRefGoogle Scholar
  54. Penn SG, Hu H, Brown PH, Lebrilla CB (1997) Direct analysis of sugar alcohol borate complexes in plant extracts by matrix-assisted laser desorption/ionization fourier transform mass spectrometry. Anal Chem 69:2471–2477PubMedCrossRefGoogle Scholar
  55. Raiford DS, Fisk CL, Becker ED (1979) Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal Chem 51:2050–2051CrossRefGoogle Scholar
  56. Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. Adv Bot Res 20:43–123CrossRefGoogle Scholar
  57. Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526PubMedCrossRefGoogle Scholar
  58. Saito T, Nakaie S, Kinoshita M, Ihara T, Kinugasa S, Nomura A, Maeda T (2004) Practical guide for accurate quantitative solution state NMR analysis. Metrologia 41:213–218CrossRefGoogle Scholar
  59. Schaeffer AA, Aloni B, Fogelman E (1987) Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 26:1883–1887CrossRefGoogle Scholar
  60. Schripsema J (2009) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21:14–21CrossRefGoogle Scholar
  61. Shintu L, Ziarelli F, Caldarelli S (2004) Is high-resolution magic angle spinning NMR a practical speciation tool for cheese samples? Parmigiano Reggiano as a case study. Magn Reson Chem 42:396–401PubMedCrossRefGoogle Scholar
  62. Sidhu OP, Annarao S, Pathre U, Snehi SK, Raj SK, Roy R, Tuli R, Khetrapal CL (2010) Metabolic and histopathological alterations of Jatropha mosaic begomovirus-infected Jatropha curcas L. by HR-MAS NMR spectroscopy and magnetic resonance imaging. Planta 232:85–93PubMedCrossRefGoogle Scholar
  63. Sobolev AP, Brosio E, Gianferri R, Segre AL (2005) Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43:625–638PubMedCrossRefGoogle Scholar
  64. Soininen P (2008) Quantitative 1H NMR Spectroscopy. Chemical and biological applications. Kuopio Univ Publ C Nat Environ Sci 240:1–128Google Scholar
  65. R, Studio Inc. (2012b) RStudio: integrated development environment for R (Version 0.96.122), Boston.
  66. USDANNDB (2011) U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 24: Nutrient Data Laboratory Home Page.
  67. Wang Y, Wyllie SG, Leach DN (1996) Chemical changes during the development and ripening of the fruit of Cucumis melo (Cv. Makdimon). J Agric Food Chem 44:210–216CrossRefGoogle Scholar
  68. Warren CR, Adams MA (2000) Capillary electrophoresis for the determination of major amino acids and sugars in foliage: application to the nitrogen nutrition of Sclerophyllous species. J Exp Bot 51:1147–1157PubMedCrossRefGoogle Scholar
  69. Whipps JM, Lewis DH (1981) Patterns of translocation, storage and interconversion of carbohydrates. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge University Press, Cambridge, pp 47–83Google Scholar
  70. Zhang MF, Li ZL (2005) A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food Chem 90:785–790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Teresa Delgado-Goñi
    • 1
    • 3
  • Sonia Campo
    • 5
  • Juana Martín-Sitjar
    • 1
    • 3
  • Miquel E. Cabañas
    • 2
    • 3
  • Blanca San Segundo
    • 5
  • Carles Arús
    • 1
    • 3
    • 4
  1. 1.Unitat de Biociències, Dept. Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  2. 2.Servei de RMNUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  3. 3.Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Cerdanyola del VallèsSpain
  4. 4.Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  5. 5.Departamento de Genética MolecularCentre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UBCerdanyola del VallèsSpain

Personalised recommendations