, Volume 237, Issue 6, pp 1425–1441 | Cite as

Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla

  • Ming-Lun Chou
  • Ming-Che Shih
  • Ming-Tsair Chan
  • Shih-Yi Liao
  • Chen-Tran Hsu
  • Yao-Ting Haung
  • Jeremy J. W. Chen
  • Der-Chih Liao
  • Fu-Hui Wu
  • Choun-Sea LinEmail author
Original Article


The high chromosome numbers, polyploid genomes, and long juvenile phases of most ornamental orchid species render functional genomics difficult and limit the discovery of genes influencing horticultural traits. The orchid Erycina pusilla has a low chromosome number (2n = 12) and flowers in vitro within 1 year, making it a standout candidate for use as a model orchid. However, transcriptomic and genomic information from E. pusilla remains limited. In this study, next-generation sequencing (NGS) technology was used to identify 90,668 unigenes by de novo assembly. These unigenes were annotated functionally and analyzed with regard to their gene ontology (GO), clusters of orthologous groups (COG), and KEGG pathways. To validate the discovery methods, a homolog of CONSTANS (CO), one of the key genes in the flowering pathway, was further analyzed. The Arabidopsis CO-Like (COL) amino acid sequences were used to screen for homologs in the E. pusilla transcriptome database. Specific primers to the homologous unigenes were then used to isolate BAC clones, which were sequenced to identify 12 E. pusilla CO-like (EpCOL) full-length genes. Based on sequence homology, domain structure, and phylogenetic analysis, these EpCOL genes were divided into four groups. Four EpCOLs fused with GFP were localized in the nucleus. Some EpCOL genes were regulated by light. These results demonstrate that nascent E. pusilla resources (transcriptome and BAC library) can be used to investigate the E. pusilla photoperiod-dependent flowering genes. In future, this strategy can be applied to other biological processes, marketable traits, and molecular breeding in this model orchid.


Expression profiling Flower induction Next-generation sequencing Orchidaceae Photoperiod RNA-Seq 




CO, CO-like, TOC1









Next-generation sequencing


Expressed sequence tags


RNA sequencing


Rapid amplification of cDNA ends


Gene ontology


Clusters of orthologous groups


B-box zinc finger protein family


Photosynthetic photon flux density


The Arabidopsis information resource


Oncidium orchid genome base



We would like to thank Ms. Anita K. Snyder and Ms. Miranda Loney for giving comments on the manuscript. This research was supported by Academia Sinica and Development Program of Industrialization for Agricultural Biotechnology, Taiwan (MCS and CSL) and National Science Council, Taiwan (grant No. NSC97-2311-B-320-002-MY3 to MLC).

Supplementary material

425_2013_1850_MOESM1_ESM.fa (45.4 mb)
Supplementary material 1 (FA 46500 kb)
425_2013_1850_MOESM2_ESM.pptx (66 kb)
Supplementary material 2 (PPTX 66 kb)
425_2013_1850_MOESM3_ESM.pptx (1.1 mb)
Supplementary material 3 (PPTX 1086 kb)
425_2013_1850_MOESM4_ESM.xlsx (16.2 mb)
Supplementary material 4 (XLSX 16556 kb)
425_2013_1850_MOESM5_ESM.pptx (98 kb)
Supplementary material 5 (PPTX 98 kb)
425_2013_1850_MOESM6_ESM.pptx (1.2 mb)
Supplementary material 6 (PPTX 1233 kb)
425_2013_1850_MOESM7_ESM.pptx (316 kb)
Supplementary material 7 (PPTX 315 kb)
425_2013_1850_MOESM8_ESM.pptx (369 kb)
Supplementary material 8 (PPTX 369 kb)


  1. Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013PubMedCrossRefGoogle Scholar
  4. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208PubMedCrossRefGoogle Scholar
  5. Ballerini ES, Kramer EM (2011) In the light of evolution: a reevaluation of conservation in the CO-FT regulon and its role in photoperiodic regulation of flowering time. Front Plant Sci 2:18CrossRefGoogle Scholar
  6. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476PubMedCrossRefGoogle Scholar
  7. Borden KLB (1998) RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochem Cell Biol 76:351–358PubMedCrossRefGoogle Scholar
  8. Bouzidi MF, Franchel J, Tao Q, Stormo K, Mraz A, Nicolas P, Mouzeyar S (2006) A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor Appl Genet 113:81–89PubMedCrossRefGoogle Scholar
  9. Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880PubMedCrossRefGoogle Scholar
  10. Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917PubMedCrossRefGoogle Scholar
  11. Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438PubMedCrossRefGoogle Scholar
  12. Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B Class MADS box genes in regulation of perianth formation in Orchid (Oncidium Gower Ramsey). Plant Physiol 152:837–853PubMedCrossRefGoogle Scholar
  13. Chang YY, Chu YW, Chen CW, Leu WM, Hsu HF, Yang CH (2011) Characterization of Oncidium ‘Gower Ramsey’ transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant Cell Physiol 52:1532–1545PubMedCrossRefGoogle Scholar
  14. Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ (2012) Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene 496:110–117PubMedCrossRefGoogle Scholar
  15. Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758–768PubMedCrossRefGoogle Scholar
  16. Chia TY, Müller A, Jung C, Mutasa-Göttgens ES (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59:2735–2748PubMedCrossRefGoogle Scholar
  17. Chiou CY, Yeh KW (2008) Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol 66:379–388PubMedCrossRefGoogle Scholar
  18. Chiu YT, Lin CS, Chang C (2011) In vitro fruting and seed production in Erycina pusilla (L.) N. H. Willams and M. W. Chase. Propag Ornam Plants 11:131–136Google Scholar
  19. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  20. Datta S, Hettiarachchi GH, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18:70–84PubMedCrossRefGoogle Scholar
  21. Delseny M, Han B, Hsing YI (2010) High throughput DNA sequencing: the new sequencing revolution. Plant Sci 179:407–422PubMedCrossRefGoogle Scholar
  22. Febrer M, Wilhelm E, Al-Kaff N, Wright J, Powell W, Bevan MW, Boulton MI (2009) Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome 52:993–1000PubMedCrossRefGoogle Scholar
  23. Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238–243PubMedCrossRefGoogle Scholar
  24. Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477PubMedCrossRefGoogle Scholar
  25. Garner W, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agricultural Res 18:553–606Google Scholar
  26. González-Schain ND, Díaz-Mendoza M, Zurczak M, Suárez-López P (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70:678–690PubMedCrossRefGoogle Scholar
  27. Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867PubMedCrossRefGoogle Scholar
  28. Hao D, Ma P, Mu J, Chen S, Xiao P, Peng Y, Huo L, Xu L, Sun C (2012) De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Sci China Life Sci 55:452–466PubMedCrossRefGoogle Scholar
  29. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R; Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261CrossRefGoogle Scholar
  30. Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19PubMedCrossRefGoogle Scholar
  31. Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684PubMedCrossRefGoogle Scholar
  32. Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504PubMedCrossRefGoogle Scholar
  33. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337PubMedCrossRefGoogle Scholar
  34. Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem 47:105–115PubMedCrossRefGoogle Scholar
  35. Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50:1544–1557PubMedCrossRefGoogle Scholar
  36. Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH (2011) Research on orchid biology and biotechnology. Plant Cell Physiol 52:1467–1486PubMedCrossRefGoogle Scholar
  37. Hsu HF, Yang CH (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43:1198PubMedCrossRefGoogle Scholar
  38. Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6 -like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794PubMedCrossRefGoogle Scholar
  39. Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51:1029–1045PubMedCrossRefGoogle Scholar
  40. Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ, Tung SY, Yang CH, Chan MT, Lin CS (2011) Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC Plant Biol 11:60–74PubMedCrossRefGoogle Scholar
  41. Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558PubMedCrossRefGoogle Scholar
  42. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1:138–148Google Scholar
  43. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280PubMedCrossRefGoogle Scholar
  44. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484PubMedCrossRefGoogle Scholar
  45. Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420PubMedCrossRefGoogle Scholar
  46. Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2012) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63:773–784PubMedCrossRefGoogle Scholar
  47. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66PubMedCrossRefGoogle Scholar
  48. Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155PubMedCrossRefGoogle Scholar
  49. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26:15–22PubMedCrossRefGoogle Scholar
  50. Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1990PubMedGoogle Scholar
  51. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272PubMedCrossRefGoogle Scholar
  52. Li D, Deng Z, Qin B, Liu X, Men Z (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 13:192PubMedCrossRefGoogle Scholar
  53. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  54. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  55. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  56. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefGoogle Scholar
  57. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14(Suppl):S111–S130PubMedGoogle Scholar
  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  59. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93PubMedCrossRefGoogle Scholar
  60. Ness RW, Siol M, Barrett SC (2011) De novo sequence assembly and characterization of the floral transcriptome in cross- and self-fertilizing plants. BMC Genomics 12:298PubMedCrossRefGoogle Scholar
  61. Pan IC, Liao DC, Wu FH, Daniell H, Singh ND, Chang C, Shih MC, Chan MT, Lin CS (2012) Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding. PLoS One 7:e34738PubMedCrossRefGoogle Scholar
  62. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619PubMedCrossRefGoogle Scholar
  63. Pellegrino G, Bellusci F, Musacchio A (2009) Genetic integrity of sympatrichybridising plant species: the case of Orchis italica and O. anthropophora. Plant Biol 11:434–441PubMedCrossRefGoogle Scholar
  64. Pinheiro F, De Barros F, Palma-Silva C, Meyer D, Fay MF, Suzuki RM, Lexer C, Cozzolino S (2010) Hybridization and introgression across different ploidy levels in the neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol Ecol 19:3981–3994PubMedCrossRefGoogle Scholar
  65. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857PubMedCrossRefGoogle Scholar
  66. Robson F, Costa MM, Hepworth SR, Vizir I, Piñeiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631PubMedCrossRefGoogle Scholar
  67. Russell A, Samuel R, Klejna V, Barfuss MH, Rupp B, Chase MW (2010) Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. Ann Bot 106:37–56PubMedCrossRefGoogle Scholar
  68. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616PubMedCrossRefGoogle Scholar
  69. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131PubMedCrossRefGoogle Scholar
  70. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289PubMedCrossRefGoogle Scholar
  71. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771PubMedCrossRefGoogle Scholar
  72. Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52:1501–1514PubMedCrossRefGoogle Scholar
  73. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  74. Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828PubMedCrossRefGoogle Scholar
  75. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  76. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28PubMedCrossRefGoogle Scholar
  77. Thiruvengadam M, Yang CH (2009) Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Rep 28:1463–1473PubMedCrossRefGoogle Scholar
  78. Thomas B (2006) Light signals and flowering. J Exp Bot 57:3387–3393PubMedCrossRefGoogle Scholar
  79. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  80. Torok M, Elkin LD (2000) Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67:63–71CrossRefGoogle Scholar
  81. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594PubMedCrossRefGoogle Scholar
  82. Valcerde F (2011) CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463CrossRefGoogle Scholar
  83. Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347PubMedCrossRefGoogle Scholar
  84. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 11:726PubMedCrossRefGoogle Scholar
  85. Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T (2003) A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 44:619–629PubMedCrossRefGoogle Scholar
  86. Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JF, Jung HJ, Vance CP, Gronwald JW (2011) Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 12:199PubMedCrossRefGoogle Scholar
  87. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484PubMedGoogle Scholar
  88. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297PubMedCrossRefGoogle Scholar
  89. Yim YS, Moak P, Sanchez-Villeda H, Musket TA, Close P, Klein PE, Mullet JE, McMullen MD, Fang Z, Schaeffer ML, Gardiner JM, Coe EH Jr, Davis GL (2007) A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 8:47PubMedCrossRefGoogle Scholar
  90. Zhang JX, Wu KL, Tian LN, Zeng SJ, Duan J (2011) Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrid. Acta Physiol Plant 33:409–417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ming-Lun Chou
    • 1
  • Ming-Che Shih
    • 2
  • Ming-Tsair Chan
    • 2
    • 3
  • Shih-Yi Liao
    • 1
  • Chen-Tran Hsu
    • 2
  • Yao-Ting Haung
    • 4
  • Jeremy J. W. Chen
    • 5
  • Der-Chih Liao
    • 2
  • Fu-Hui Wu
    • 2
  • Choun-Sea Lin
    • 2
    Email author
  1. 1.Department of Life SciencesTzu Chi UniversityHualienTaiwan
  2. 2.Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
  3. 3.Academia Sinica Biotechnology Center in Southern TaiwanTainanTaiwan
  4. 4.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChia-yiTaiwan
  5. 5.Institute of Biomedical SciencesNational Chung-Hsing UniversityTaichungTaiwan

Personalised recommendations