Planta

, Volume 237, Issue 2, pp 637–651 | Cite as

Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis

  • Fabio Facchinelli
  • Mathias Pribil
  • Ulrike Oster
  • Nina J. Ebert
  • Debashish Bhattacharya
  • Dario Leister
  • Andreas P. M. Weber
Original Article

Abstract

Glaucophytes represent the first lineage of photosynthetic eukaryotes of primary endosymbiotic origin that diverged after plastid establishment. The muroplast of Cyanophora paradoxa represents a primitive plastid that resembles its cyanobacterial ancestor in pigment composition and the presence of a peptidoglycan wall. To attain insights into the evolutionary history of cyanobiont integration and plastid development, it would thus be highly desirable to obtain knowledge on the composition of the glaucophyte plastid proteome. Here, we provide the first proteomic analysis of the muroplast of C. paradoxa. Mass spectrometric analysis of the muroplast proteome identified 510 proteins with high confidence. The protein repertoire of the muroplast revealed novel paths for reduced carbon flow and export to the cytosol through a sugar phosphate transporter of chlamydial origin. We propose that C. paradoxa possesses a primordial plastid mirroring the situation in the early protoalga.

Keywords

Endosymbiosis Evolution Plastid Proteomics Transporters 

Abbreviations

MS

Mass spectrometry

EGT

Endosymbiotic gene transfer

TOC/TIC

Translocon of the outer chloroplast membrane/translocon of the inner chloroplast membrane

PT

Phosphate translocators

NST

Nucleotide-sugar transporter

NTT

Nucleoside triphosphate transporter

Supplementary material

425_2012_1819_MOESM1_ESM.jpg (446 kb)
Supplementary material 1 (JPEG 446kb)
425_2012_1819_MOESM2_ESM.jpg (4.2 mb)
Supplementary material 2 (JPEG 4.15mb)
425_2012_1819_MOESM3_ESM.pdf (432 kb)
Table S1 Protein identification for each sample and replicate (PDF 431 kb)
425_2012_1819_MOESM4_ESM.pdf (673 kb)
Table S2 Summary of the protein identifications with annotations based on blast2GO, TAIR and KEGG. For each protein identified the sequence, the number of predicted transmembrane domains (Tusnady and Simon 1998) and the number of assigned spectra for each replicate are indicated (PDF 672 kb)
425_2012_1819_MOESM5_ESM.pdf (650 kb)
Table S3 Subcellular localization prediction of the identified proteins by AtSubP (PDF 649 kb)

References

  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30:772–853Google Scholar
  3. Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120PubMedCrossRefGoogle Scholar
  4. Ball SG, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801PubMedCrossRefGoogle Scholar
  5. Ball SG, Subtil A, Bhattachrya D, Moustafa A, Weber APM, Gehre L, Colleoni C, Arias MC, Cenci U, Dauvillé D (2012) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell (in press)Google Scholar
  6. Becker B, Hoef-Emden K, Melkonian M (2008) Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 8:203PubMedCrossRefGoogle Scholar
  7. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60PubMedCrossRefGoogle Scholar
  8. Black MT, Meyer D, Widger W, Cramer W (1987) Light-regulated methylation of chloroplast proteins. J Biol Chem 262:9803–9807PubMedGoogle Scholar
  9. Block MA, Tewari AK, Albrieux C, Maréchal E, Joyard J (2003) The plant S-adenosyl-l-methionine: Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269:240–248CrossRefGoogle Scholar
  10. Borchert S, Harborth J, Schunemann D, Hoferichter P, Heldt HW (1993) Studies of the enzymatic capacities and transport-properties of pea root plastids. Plant Physiol 101:303–312PubMedGoogle Scholar
  11. Bouvier F, Linka N, Isner JC, Mutterer J, Weber APM, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–3105PubMedCrossRefGoogle Scholar
  12. Breuers FK, Brautigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber APM (2012) Dynamic remodeling of the plastid envelope membranes—a tool for chloroplast envelope in vivo localizations. Front Plant Sci 3:7PubMedCrossRefGoogle Scholar
  13. Brinkman FSL, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay BB, Otto SP, Ouellette BFF, Keeling PJ, Rose AM, Hancock REW, Jones SJM (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12:1159–1167PubMedCrossRefGoogle Scholar
  14. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182PubMedCrossRefGoogle Scholar
  15. Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64PubMedCrossRefGoogle Scholar
  16. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356PubMedCrossRefGoogle Scholar
  17. Colleoni C, Linka M, Deschamps P, Handford MG, Dupree P, Weber APM, Ball SG (2010) Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 27:2691–2701PubMedCrossRefGoogle Scholar
  18. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832PubMedGoogle Scholar
  19. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  20. Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, Haebel S, Ritte G, Steup M, Falcon LI, Moreira D, Loffelhardt W, Raj JN, Plancke C, d’Hulst C, Dauvillee D, Ball S (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548PubMedCrossRefGoogle Scholar
  21. Eastmond PJ, Rawsthorne S (2000) Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo. Plant Physiol 122:767–774PubMedCrossRefGoogle Scholar
  22. Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14PubMedCrossRefGoogle Scholar
  23. Enami I, Iwai M, Akiyama A, Suzuki T, Okumura A, Katoh T, Tada O, Ohta H, Shen JR (2003) Comparison of binding and functional properties of two extrinsic components, Cyt c550 and a 12 kDa protein, in cyanobacterial PSII with those in red algal PSII. Plant Cell Physiol 44:820–827PubMedCrossRefGoogle Scholar
  24. Facchinelli F, Weber APM (2011) Frontiers: the metabolite transporters of the plastid envelope: an update. Front Plant Physiol 2:50Google Scholar
  25. Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler RE, Flügge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462PubMedGoogle Scholar
  26. Fliege R, Flügge UI, Werdan K, Heldt HW (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta 502:232–247PubMedCrossRefGoogle Scholar
  27. Flügge UI, Heldt HW (1984) The phosphate-triose phosphate-phosphoglycerate translocator of the chloroplast. Trends Biochem Sci 9:530–533CrossRefGoogle Scholar
  28. Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365PubMedCrossRefGoogle Scholar
  29. Herrmann KM (1995) The Shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919PubMedGoogle Scholar
  30. Huang JL, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8(9):R109CrossRefGoogle Scholar
  31. Journet EP, Douce R (1985) Enzymic capacities of purified cauliflower bud plastids for lipid-synthesis and carbohydrate-metabolism. Plant Physiol 79:458–467PubMedCrossRefGoogle Scholar
  32. Kaundal R, Saini R, Zhao PX (2010) Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154:36–54PubMedCrossRefGoogle Scholar
  33. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos T R Soc B 365:729–748CrossRefGoogle Scholar
  34. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392PubMedCrossRefGoogle Scholar
  35. Koike H, Ikeda Y, Yusa F, Kashino Y, Satoh K (2007) Isolation and characterization of outer and inner envelope membranes of cyanelles from a glaucocystophyte, Cyanophora paradoxa. Photosynth Res 93:45–53PubMedCrossRefGoogle Scholar
  36. Lamesch P, Berardini TZ, Li DH, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210PubMedCrossRefGoogle Scholar
  37. Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53PubMedCrossRefGoogle Scholar
  38. Linka M, Jamai A, Weber AP (2008) Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 148:1487–1496PubMedCrossRefGoogle Scholar
  39. Löffelhardt W, Haeseler A, Schleiff E, Margulis L, Hall J, McFall-Ngai M (2007) The β-barrel shaped polypeptide transporter, an old concept for precursor protein transfer across membranes, vol 44. Balaban, Rehovot, Israel, pp 33–42Google Scholar
  40. Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432PubMedCrossRefGoogle Scholar
  41. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  42. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165PubMedCrossRefGoogle Scholar
  43. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  44. McFadden G, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557CrossRefGoogle Scholar
  45. Miernyk JA, Dennis DT (1992) A developmental analysis of the enolase Isozymes from Ricinus communis. Plant Physiol 99:748–750PubMedCrossRefGoogle Scholar
  46. Mitra SK, Gantt JA, Ruby JF, Clouse SD, Goshe MB (2007) Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 6:1933–1950PubMedCrossRefGoogle Scholar
  47. Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72PubMedCrossRefGoogle Scholar
  48. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185PubMedCrossRefGoogle Scholar
  49. Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to plantae with predominantly plastid functions. Plos One 3 e2205Google Scholar
  50. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658PubMedCrossRefGoogle Scholar
  51. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Biol 48:109–136CrossRefGoogle Scholar
  52. Pfanzagl B, Zenker A, Pittenauer E, Allmaier G, MartinezTorrecuadrada J, Schmid ER, DePedro MA, Löffelhardt W (1996) Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol 178:332–339PubMedGoogle Scholar
  53. Prabhakar V, Lottgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE (2009) Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 583:983–991PubMedCrossRefGoogle Scholar
  54. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847PubMedCrossRefGoogle Scholar
  55. Qiu H, Yang EC, Bhattacharya D, Yoon HS (2012) Ancient gene paralogy may mislead inference of plastid phylogeny. Mol Biol Evol 29:3333–3343PubMedCrossRefGoogle Scholar
  56. Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plants—chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557PubMedCrossRefGoogle Scholar
  57. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:1984–1995CrossRefGoogle Scholar
  58. Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of photosystem II. Photosynth Res 92:369–387PubMedCrossRefGoogle Scholar
  59. Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709PubMedCrossRefGoogle Scholar
  60. Schenk H (1970) Nachweis einer lysozymempfindlichen Stützmembran der Endocyanellen von Cyanophora paradoxa (Korschikoff). Z Naturforsch 25b:656Google Scholar
  61. Schleiff E, Soll J (2005) Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep 6:1023–1027PubMedCrossRefGoogle Scholar
  62. Schulze-Siebert D, Heineke D, Scharf H, Schultz G (1984) Pyruvate-derived amino acids in spinach chloroplasts: synthesis and regulation during photosynthetic carbon metabolism. Plant Physiol 76:465–471PubMedCrossRefGoogle Scholar
  63. Schwöppe C, Winkler HH, Neuhaus HE (2002) Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115PubMedCrossRefGoogle Scholar
  64. Soll J, Kemmerling M, Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204:544–550PubMedCrossRefGoogle Scholar
  65. Steiner JM, Serrano A, Allmaier G, Jakowitsch J, Löffelhardt W (2000) Cytochrome c(6) from Cyanophora paradoxa—characterization of the protein and the cDNA of the precursor and import into isolated cyanelles. Eur J Biochem 267:4232–4241PubMedGoogle Scholar
  66. Steiner JM, Löffelhardt W (2002) Protein import into cyanelles. Trends Plant Sci 7:72–77Google Scholar
  67. Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652PubMedCrossRefGoogle Scholar
  68. Stitt M, Ap Rees T (1979) Capacities of pea-chloroplasts to catalyze the oxidative pentose-phosphate pathway and glycolysis. Phytochemistry 18:1905–1911CrossRefGoogle Scholar
  69. Struyvé M, Moons M, Tommassen J (1991) Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148PubMedCrossRefGoogle Scholar
  70. Thangaraj B, Ryan CM, Souda P, Krause K, Faull KF, Weber APM, Fromme P, Whitelegge JP (2010) Data-directed top-down Fourier-transform mass spectrometry of a large integral membrane protein complex: photosystem II from Galdieria sulphuraria. Proteomics 10:3644–3656PubMedCrossRefGoogle Scholar
  71. Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175PubMedCrossRefGoogle Scholar
  72. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135PubMedCrossRefGoogle Scholar
  73. Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506PubMedCrossRefGoogle Scholar
  74. Tyra HM, Linka M, Weber A, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212PubMedCrossRefGoogle Scholar
  75. Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735PubMedGoogle Scholar
  76. van Wijk KJ, Baginsky S (2011) Plastid proteomics in higher plants: current state and future goals. Plant Physiol 155:1578–1588PubMedCrossRefGoogle Scholar
  77. Weber APM, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77PubMedCrossRefGoogle Scholar
  78. Weber APM, Oesterhelt C, Gross W, Brautigam A, Imboden LA, Krassovskaya I, Linka N, Truchina J, Schneidereit J, Voll H, Voll LM, Zimmermann M, Jamai A, Riekhof WR, Yu B, Garavito RM, Benning C (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55:17–32PubMedCrossRefGoogle Scholar
  79. Weber APM, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612PubMedCrossRefGoogle Scholar
  80. Wolfe GR, Cunningham FX, Durnford D, Green BR, Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568CrossRefGoogle Scholar
  81. Wunder T, Martin R, Löffelhardt W, Schleiff E, Steiner JM (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol Biol 7:236PubMedCrossRefGoogle Scholar
  82. Yusa F, Steiner JM, Löffelhardt W (2008) Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol 8:304PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabio Facchinelli
    • 1
  • Mathias Pribil
    • 2
    • 3
  • Ulrike Oster
    • 3
  • Nina J. Ebert
    • 1
  • Debashish Bhattacharya
    • 4
  • Dario Leister
    • 2
  • Andreas P. M. Weber
    • 1
  1. 1.Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Lehrstuhl für Botanik, Department Biologie ILudwig-Maximilians-UniversitätPlanegg-MartinsriedGermany
  3. 3.Mass Spectrometry Unit, Department Biologie ILudwig-Maximilians-UniversitätPlanegg-MartinsriedGermany
  4. 4.Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations