, Volume 237, Issue 2, pp 573–588 | Cite as

Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development

  • Monique Benz
  • Jürgen Soll
  • Elisabeth AnkeleEmail author
Original Article


Members of the Alb3/Oxa1/YidC protein family function as insertases in chloroplasts, mitochondria, and bacteria. Due to independent gene duplications, all organisms possess two isoforms, Oxa1 and Oxa2 except gram-negative bacteria, which encode only for one YidC-like protein. The genome of Arabidopsis thaliana however, encodes for eight different isoforms. The localization of three of these isoforms has been identified earlier: Alb3 and Alb4 located in thylakoid membranes of chloroplasts while AtOxa1 was found in the inner membrane of mitochondria. Here, we show that the second Oxa1 protein, Oxa1b as well as two Oxa2 proteins are also localized in mitochondria. The last two isoforms most likely encode truncated versions of Oxa-like proteins, which might be inoperable pseudogenes. Homozygous mutant lines were only obtained for Oxa1b, which did not reveal any significant phenotypes, while T-DNA insertion lines of Oxa1a, Oxa2a and Oxa2b resulted only in heterozygous plants indicating that these genes are indispensable for plant development. Phenotyping heterozygous lines showed that embryos are either retarded in growth, display an albino phenotype or embryo formation was entirely abolished suggesting that Oxa1a and both Oxa2 proteins function in embryo formation although at different developmental stages as indicated by the various phenotypes observed.


Alb3/Oxa1/YidC membrane protein family Arabidopsis Embryo lethality Insertase Mitochondria 



Untranslated regions






Intermembrane space


Green fluorescence protein



We thank Prof. Andreas Weber (University Düsseldorf, Germany) for the CFP-PTS1 clone, Dr. Chris Hawes (Bookes University, Osford, UK) for the ST-GFP clone and Dr. Barbara Pickard (Washington University, St. Luis, USA) for the SP + ER-GFP, dcp.r-GFP and mtio-d2r clones. This work was supported by the Deutsche Forschungsgemeinschaft SFB-TR1 project C4.

Supplementary material

425_2012_1793_MOESM1_ESM.pptx (10.9 mb)
Supplementary material 1 (PPTX 11117 kb)


  1. Altamura N, Capitanio N, Bonnefoy N, Papa S, Dujardin G (1996) The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett 382:111–115PubMedCrossRefGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  3. Bauer M, Behrens M, Esser K, Michaelis G, Pratje E (1994) PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol Gen Genet 245:272–278PubMedCrossRefGoogle Scholar
  4. Benz M, Bals T, Gügel IL, Piotrowski M, Kuhn A, Schünemann D, Soll J, Ankele E (2009) Alb4 of Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding photosynthetic complex, the CF1CF0-ATP synthase. Mol Plant 2:1410–1424PubMedCrossRefGoogle Scholar
  5. Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G (1994) OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 239:201–212PubMedCrossRefGoogle Scholar
  6. Bonnefoy N, Fiumera HL, Dujardin G, Fox TD (2009) Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BBA 1793:60–70PubMedCrossRefGoogle Scholar
  7. Carrie C, Murcha MW, Whelan J (2010) An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biol 10:249 (open access)Google Scholar
  8. Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T (2006) The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol 358:1010–1022PubMedCrossRefGoogle Scholar
  9. Chew O, Lister R, Qbadou S, Heazlewood JL, Soll J, Schleiff E, Millar AH, Whelan J (2004) A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett 557:109–114PubMedCrossRefGoogle Scholar
  10. Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 7:161–187CrossRefGoogle Scholar
  11. Dereeper A, Guigon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guidon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 (Suppl. 2):W465–W469Google Scholar
  12. Dereeper A, Audic S, Claverie JM, Banc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 12:8 (open access)Google Scholar
  13. Duncan O, Murcha MW, Whelan J (2012) Unique components of the plant mitochondrial protein import apparatus. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2012.02.015
  14. Dünschede B, Bals T, Funke S, Schünemann D (2011) Interaction studies between the chloroplast signal recognition particle subunit CpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3. J Biol Chem 286:35187–35195PubMedCrossRefGoogle Scholar
  15. Fiumera HL, Dunham MJ, Saracco SA, Butler CA, Kelly JA, Fox TD (2009) Translocation and assembly of mitochondrially coded Saccharomyces cerevisiae cytochrome c oxidase subunit Cox2 by Oxa1 and Yme1 in the absence of Cox18. Genetics 182:519–528PubMedCrossRefGoogle Scholar
  16. Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P (2003) Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 23:7818–7828PubMedCrossRefGoogle Scholar
  17. Frydman J, Höhfeld J (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22:87–92PubMedCrossRefGoogle Scholar
  18. Funes S, Nargang FE, Neupert W, Herrmann JM (2004a) The Oxa2 protein of Neurospora crassa plays a critical role in the biogenesis of cytochrome oxidase and defines a ubiquitous subbranch of the Oxa1/YidC/Alb3 protein family. Mol Biol Cell 15:1853–1861PubMedCrossRefGoogle Scholar
  19. Funes S, Gerdes L, Inaba M, Soll J, Herrmann JM (2004b) The Arabidopsis thaliana chloroplast inner envelope protein ARTEMIS is a functional member of the Alb3/Oxa1/YidC family of proteins. FEBS Lett 569:89–93PubMedCrossRefGoogle Scholar
  20. Funes S, Hasona A, Bauerschmitt H, Grubbauer C, Kauff F, Collins R, Crowlea PJ, Plamer SR, Brady LJ, Herrmann JM (2009) Independent gene dublications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci USA 106: 6656–6661Google Scholar
  21. Funes S, Kauff F, van der Sluis EO, Ott M, Herrmann JM (2011) Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol Chem 392:13–19PubMedCrossRefGoogle Scholar
  22. Gava LM, Gonçalves DC, Borges JC, Ramos CH (2011) Stoichiometry and thermodynamics of the interaction between the C-terminus of human 90 kDa heat shock protein Hsp90 and the mitochondrial translocase of outer membrane Tom70. Arch Biochem Biophys 513:119–125PubMedCrossRefGoogle Scholar
  23. Gebert N, Chacinska A, Wagner K, Guiard B, Koehler CM, Rehling P, Pfanner N, Wiedemann N (2008) Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Rep 9:548–554PubMedCrossRefGoogle Scholar
  24. Gerdes L, Bals T, Klostermann E, Karl M, Philippar K, Hünken M, Soll J, Schünemann D (2006) A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J Biol Chem 281:16632–16642PubMedCrossRefGoogle Scholar
  25. Hamel P, Sakamoto W, Wintz H, Dujardin G (1997) Functional complementation of an oxa1-yeast mutation identifies an Arabidopsis thaliana cDNA involved in the assembly of respiratory complexes. Plant J 12:1319–1327PubMedCrossRefGoogle Scholar
  26. He K, Fox TD (1997) Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol Biol Cell 8:1449–1460PubMedGoogle Scholar
  27. Hell K, Herrmmann J, Pratje E, Neupert W, Stuart RA (1997) Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett 418:367–370PubMedCrossRefGoogle Scholar
  28. Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci USA 95:2250–2255PubMedCrossRefGoogle Scholar
  29. Hell K, Neupert W, Stuart RA (2001) Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:1281–1288PubMedCrossRefGoogle Scholar
  30. Hildenbeutel M, Theis M, Geier M, Haferkamp I, Ns HE, Herrmann JM, Ott M (2012) The membrane insertase Oxa1 is required for efficient import of carrier proteins into mitochondria. J Mol Biol 423:590–599PubMedCrossRefGoogle Scholar
  31. Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438–6447PubMedCrossRefGoogle Scholar
  32. Jia L, Dienhart MK, Stuart RA (2007) Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1FO-ATP synthase complex. Mol Biol Cell 18:1897–1908PubMedCrossRefGoogle Scholar
  33. Jia L, Kaur J, Stuart A (2009) Mapping of the Saccaromyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of Mrp40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. Eukaryot Cell 8:1792–1802PubMedCrossRefGoogle Scholar
  34. Jiang F, Yi L, Moore M, Chen M, Rohl T, van Wijk KJ, de Gier JWL, Henry R, Dalbey RE (2002) Chloroplast YidC homolog albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 277:19281–19288PubMedCrossRefGoogle Scholar
  35. Karl M, Soll J, Ankele E (2009) The role of Alb3/YidC-like proteins in the formation of photosynthetic membranes. Curr Topics Plant Biol 10:61–77Google Scholar
  36. Kermorgant M, Bonnefoy N, Dujardin G (1997) Oxa1p, which is required for cytochrome c oxidase and ATP synthase complex formation, is embedded in the mitochondrial inner membrane. Curr Genet 31:302–307PubMedCrossRefGoogle Scholar
  37. Kerscher O, Holder J, Srinivasan M, Leung RS, Jensen RE (1997) The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J Cell Biol 139:1663–1675PubMedCrossRefGoogle Scholar
  38. Kiefer D, Kuhn A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259:113–138PubMedCrossRefGoogle Scholar
  39. Kuhn A, Stuart R, Henry R, Dalbey RE (2003) The Alb3/Oxa1/YidC protein family: membrane-localized chaperones facilitating membrane protein insertion? Trends Cell Biol 13:510–516PubMedCrossRefGoogle Scholar
  40. Lewis NE, Marty NJ, Kathir KM, Rajalingam D, Knight AD, Daily A, Kumar TKS, Henry R, Goforth RL (2010) A dynamic CpSRP43-Albino3 interaction mediates translocase regulation of CpSRP targeting components. J Biol Chem 285:34220–34230PubMedCrossRefGoogle Scholar
  41. Lu Y, Li C, Wang H, Chen H, Berg H, Xia Y (2011) AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. Plant J 67:13–25PubMedCrossRefGoogle Scholar
  42. Luirink J, Samuelsson T, de Gier JW (2001) YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 501:1–5PubMedCrossRefGoogle Scholar
  43. Luirink J, von Heijne G, Houben E, de Gier JW (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355PubMedCrossRefGoogle Scholar
  44. Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R (2012) An essential pentatricopeptide repeat protein facilitates 5′ maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell 24:3087–3105PubMedCrossRefGoogle Scholar
  45. MdE Haque, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL (2010) Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes. J Biol Chem 285:28353–28362CrossRefGoogle Scholar
  46. Moore M, Harrison MS, Peterson EC, Henry R (2000) Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275:1529–1532PubMedCrossRefGoogle Scholar
  47. Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62PubMedCrossRefGoogle Scholar
  48. Oliver DC, Paetzel M (2008) Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J Biol Chem 283:5208–5216PubMedCrossRefGoogle Scholar
  49. Palmer SR, Crowley PJ, Oli MW, Ruelf MA, Michalek SM, Brady LJ (2012) YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans. Microbiology 158:1702–1712PubMedCrossRefGoogle Scholar
  50. Pierrel F, Bestwick ML, Cobine PA, Khalimonchuk O, Cricco JA, Winge DR (2007) Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly. EMBO J 26:4335–4346PubMedCrossRefGoogle Scholar
  51. Pohlschröder M, Hartmann E, Hand NJ, Dilks K, Haddad A (2005) Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111PubMedCrossRefGoogle Scholar
  52. Preuss M, Leonhard K, Helll K, Stuart RA, Neupert W, Herrmann JM (2001). Mba1, a novel component of the mitochondrial protein export machinery of the yeast Saccharomyces cerevisiae. J Cell Biol 153:1085–1096.Google Scholar
  53. Preuss M, Ott M, Funes S, Luirink J, Herrmann JM (2005) Evolution of mitochondrial Oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. J Biol Chem 280:13004–13011PubMedCrossRefGoogle Scholar
  54. Qbadou S, Becker T, Mirus O, Tews I, Soll J, Schleiff E (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25:1836–1847PubMedCrossRefGoogle Scholar
  55. Ravaud S, Stjepanovic G, Wild K, Sinning I (2008) The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J Biol Chem 283:9350–9358PubMedCrossRefGoogle Scholar
  56. Richter CV, Bals T, Schünemann D (2010) Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport. Eur J Cell Biol 89:965–973PubMedCrossRefGoogle Scholar
  57. Sääf A, Monné M, de Gier JW, von Heijne G (1998) Membrane topology of the 60-kDa Oxa1p homologue from Escherichia coli. J Biol Chem 273:30415–30418PubMedCrossRefGoogle Scholar
  58. Sakamoto W, Spielewoy N, Bonnard G, Murata M, Wintz H (2000) Mitochondrial localization of AtOxa1, an Arabidopsis homologue of yeast Oxa1p involved in the insertion and assembly of protein complexes in mitochondrial inner membrane. Plant Cell Physiol 41:1157–1163PubMedCrossRefGoogle Scholar
  59. Samuelson JC, Chen M, Juang F, Moller I, Wiedemann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406:637–641PubMedCrossRefGoogle Scholar
  60. Saracco SA, Fox TD (2002) Cox18p is required for export of the mitochondrially encoded Saccaromyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 13:1122–1131PubMedCrossRefGoogle Scholar
  61. Sato T, Mihara K (2009) Topogenesis of mammalian Oxa1, a component of the mitochondrial inner membrane protein export machinery. J Biol Chem 284:14819–14827PubMedCrossRefGoogle Scholar
  62. Schleyer M, Schmidt B, Neupert W (1982) Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. Eur J Biochem 125:109–116PubMedCrossRefGoogle Scholar
  63. Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26PubMedCrossRefGoogle Scholar
  64. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, can der Does C, Driessen AJ, Oudega B, Luirink J (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19:542–549Google Scholar
  65. Sørmo CG, Brembu T, Winge P, Bones AM (2011) Arabidopsis thaliana MIRO1 and MIRO2 GTPases are unequally redundant in pollen tube growth and fusion of polar nuclei during female gametogenesis. PLoS ONE 6:e18530PubMedCrossRefGoogle Scholar
  66. Souza RL, Green-Willms NS, Fox TD, Tzagoloff A, Nobrega FG (2000) Cloning and characterization of COX18, a Saccharomyces cerevisiae PET gene required for the assembly of cytochrome oxidase. J Biol Chem 275:14898–14902PubMedCrossRefGoogle Scholar
  67. Stuart R (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592:79–87PubMedCrossRefGoogle Scholar
  68. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730PubMedGoogle Scholar
  69. Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann JM (2003) Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J 22:6448–6457PubMedCrossRefGoogle Scholar
  70. Urbanus ML, Scotti PA, Froderberg L, Saaf A, de Gier JW, Brunner J, Samuelson JC, Dalbey RE, Oudega B, Luirink J (2001) Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2:524–529PubMedGoogle Scholar
  71. Urbanus ML, Fröderberg L, Drew D, Björk P, de Gier JWL, Brunner J, Oudega B, Luirink J (2002) Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem 277:12718–12723PubMedCrossRefGoogle Scholar
  72. Van Bloois E, Nagamore S, Koningstein G, Ullers RS, Preuss M, Oudega B, Harms N, Kaback HR, Herrmann JM, Luirink J (2005) The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J Biol Chem 280:12996–13003PubMedCrossRefGoogle Scholar
  73. Van Bloois E, Koningstein G, Bauerschmitt H, Herrmann JM, Luirink J (2007) Saccaromyces cerevisiae Cox18 complements the essential Sec-independent function of Escherichia coli YidC. FEBS J 274:5704–5713PubMedCrossRefGoogle Scholar
  74. Van Der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222PubMedCrossRefGoogle Scholar
  75. Van der Laan M, Nouwen NP, Driessen AJ (2005) YidC—an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr Opin Microbiol 8:182–187PubMedCrossRefGoogle Scholar
  76. Waegemann K, Soll J (1995) Characterization and isolation of the chloroplast protein import machinery. Methods Cell Biol 50:255–267PubMedCrossRefGoogle Scholar
  77. Wang P, Dalbey RE (2011) Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim Biophys Acta 1808:866–875PubMedCrossRefGoogle Scholar
  78. Whelan J, Knorpp C, Glaser E (1990) Sorting of precursor proteins between isolated spinach leaf mitochondria and chloroplasts. Plant Mol Biol 14:977–982PubMedCrossRefGoogle Scholar
  79. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718PubMedCrossRefGoogle Scholar
  80. Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A (2006) Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochem 45:13401–13408CrossRefGoogle Scholar
  81. Yamaoka S, Leaver CJ (2008) EMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen. Plant Cell 20:589–601PubMedCrossRefGoogle Scholar
  82. Yen MR, Harley KT, Tseng YH, Saier MH Jr (2001) Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 204:223–231PubMedCrossRefGoogle Scholar
  83. Yi L, Dalbey RE (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol Membr Biol 22:101–111PubMedCrossRefGoogle Scholar
  84. Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE (2003) YidC is strictly required for membrane insertin of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. Biochemistry 42:10537–10544PubMedCrossRefGoogle Scholar
  85. Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50PubMedCrossRefGoogle Scholar
  86. Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199PubMedCrossRefGoogle Scholar
  87. Zhang YJ, Tian HF, Wen JF (2009) The evolution of YidC/Oxa1/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 9:137 (open access)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monique Benz
    • 1
    • 2
  • Jürgen Soll
    • 2
  • Elisabeth Ankele
    • 2
    • 3
    Email author
  1. 1.Energy Biosciences InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department Biologie I-BotanikLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Munich Center of Integrated Protein Science CIPSMLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations