Planta

, Volume 236, Issue 6, pp 1775–1790 | Cite as

Physiological responses and endogenous cytokinin profiles of tissue-cultured ‘Williams’ bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments

  • Adeyemi O. Aremu
  • Michael W. Bairu
  • Ondřej Novák
  • Lenka Plačková
  • Marek Zatloukal
  • Karel Doležal
  • Jeffrey F. Finnie
  • Miroslav Strnad
  • Johannes Van Staden
Original Article

Abstract

The effect of supplementing either meta-topolin (mT) or N6-benzyladenine (BA) requiring cultures with roscovitine (6-benzylamino-2-[1(R)-(hydroxymethyl)propyl]amino-9-isopropylpurine), a cyclin-dependent kinase (CDK) and N-glucosylation inhibitor, and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine), an inhibitor of cytokinin (CK) degradation, on the endogenous CK profiles and physiology of banana in vitro was investigated. Growth parameters including multiplication rate and biomass were recorded after 42 days. Endogenous CK levels were quantified using UPLC–MS/MS while the photosynthetic pigment and phenolic contents were evaluated spectrophotometrically. The highest regeneration rate (93 %) was observed in BA + roscovitine while mT + INCYDE plantlets produced most shoots. Treatment with BA + roscovitine had the highest shoot length and biomass. Although not significant, there was a higher proanthocyanidin level in BA + roscovitine treatments compared to the control (BA). The levels of total phenolics and flavonoids were significantly higher in mT + roscovitine treatment than in the mT-treated regenerants. The presence of roscovitine and/or INCYDE had no significant effect on the photosynthetic pigments of the banana plantlets. Forty-seven aromatic and isoprenoid CKs categorized into nine CK-types were detected at varying concentrations. The presence of mT + roscovitine and/or INCYDE increased the levels of O-glucosides while 9-glucosides were higher in the presence of BA. Generally, the underground parts had higher CK levels than the aerial parts; however, the presence of INCYDE increased the level of CK quantified in the aerial parts. From a practical perspective, the use of roscovitine and INCYDE in micropropagation could be crucial in the alleviation of commonly observed in vitro-induced physiological abnormalities.

Keywords

Cyclin-dependent kinase Cytokinin metabolism Micropropagation Musa spp. Photosynthesis Plant secondary metabolites 

Abbreviations

ANOVA

Analysis of variance

BA

N6-Benzyladenine

BA9G

N6-Benzyladenine-9-glucoside

BAR

N6-Benzyladenosine

BAR5′MP

N6-Benzyladenosine-5′-monophosphate

CCE

Cyanidin chloride equivalents

CDK

Cyclin-dependent kinase

CE

Catechin equivalents

CK

Cytokinin

CKX

Cytokinin oxidase/dehydrogenase

cZ

cis-Zeatin

cZ9G

cis-Zeatin-9-glucoside

cZOG

cis-Zeatin-O-glucoside

cZR

cis-Zeatin riboside

cZR5′MP

cis-Zeatin riboside-5′-monophosphate

cZROG

cis-Zeatin-O-glucoside riboside

DHZ

Dihydrozeatin

DHZ9G

Dihydrozeatin-9-glucoside

DHZOG

Dihydrozeatin-O-glucoside

DHZR

Dihydrozeatin riboside

DHZR5′MP

Dihydrozeatin riboside-5′-monophosphate

DHZROG

Dihydrozeatin-O-glucoside riboside

DMRT

Duncan’s multiple range test

GAE

Gallic acid equivalents

IAC

Immunoaffinity chromatography

INCYDE

2-Chloro-6-(3-methoxyphenyl)aminopurine

iP

N6-Isopentenyladenine

iP9G

N6-Isopentenyladenine-9-glucoside

iPR

N6-Isopentenyladenosine

iPR5′MP

N6-Isopentenyladenosine-5′-monophosphate

IPT

Isopentenyltransferase

Kin

Kinetin

Kin9G

Kinetin-9-glucoside

KinR

Kinetin riboside

KinR5′MP

Kinetin riboside-5′-monophosphate

MRM

Multiple reaction monitoring

MS

Murashige and Skoog medium

mT

meta-Topolin

mT9G

meta-Topolin-9-glucoside

mTOG

meta-Topolin-O-glucoside

mTR

meta-Topolin riboside

mTR5′MP

meta-Topolin-5′-monophosphate

mTROG

meta-Topolin-O-glucoside riboside

oT

ortho-Topolin

oT9G

ortho-Topolin-9-glucoside

oTOG

ortho-Topolin-O-glucoside

oTR

ortho-Topolin riboside

oTR5′MP

ortho-Topolin-5′-monophosphate

oTROG

ortho-Topolin-O-glucoside riboside

PGR

Plant growth regulator

PPFD

Photosynthetic photon flux density

pT

para-Topolin

PTC

Plant tissue culture

pTOG

para-Topolin-O-glucoside

pTR

para-Topolin riboside

pTR5′MP

para-Topolin-5′-monophosphate

pTROG

para-Topolin-O-glucoside riboside

tZ

trans-Zeatin

tZ9G

trans-Zeatin-9-glucoside

tZOG

trans-Zeatin-O-glucoside

tZR

trans-Zeatin riboside

tZR5′MP

trans-Zeatin riboside-5′-monophosphate

tZROG

trans-Zeatin-O-glucoside riboside

UPLC

Ultra performance liquid chromatography

References

  1. Amoo SO, Finnie JF, Van Staden J (2011) The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul 63:197–206CrossRefGoogle Scholar
  2. Aremu AO, Bairu MW, Finnie JF, Van Staden J (2012a) Stimulatory role of smoke–water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated ‘Williams’ bananas. Plant Growth Regul 67:271–279CrossRefGoogle Scholar
  3. Aremu AO, Bairu MW, Doležal K, Finnie JF, Van Staden J (2012b) Topolins: a panacea to plant tissue culture challenges? Plant Cell Tiss Org Cult 108:1–16CrossRefGoogle Scholar
  4. Auer CA (1997) Cytokinin conjugation: recent advances and patterns in plant evolution. Plant Growth Regul 23:17–32CrossRefGoogle Scholar
  5. Bairu MW, Stirk WA, Doležal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tiss Org Cult 90:15–23CrossRefGoogle Scholar
  6. Bairu MW, Stirk WA, Doležal K, Van Staden J (2008) The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tiss Org Cult 95:373–379CrossRefGoogle Scholar
  7. Bairu MW, Novák O, Doležal K, Van Staden J (2011) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul 63:105–114CrossRefGoogle Scholar
  8. Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969PubMedCrossRefGoogle Scholar
  9. Binarová P, Doležel J, Draber P, Heberle-Bors E, Strnad M, Bögre L (1998) Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. Plant J 16:697–707PubMedCrossRefGoogle Scholar
  10. Blagoeva E, Malbeck J, Gaudinová A, Vaněk T, Vaňková R (2003) Cyclin-dependent kinase inhibitor, roscovitine, in combination with exogenous cytokinin, N6-benzyladenine, causes increase of cis-cytokinins in immobilized tobacco cells. Biotechnol Lett 25:469–472PubMedCrossRefGoogle Scholar
  11. Blagoeva E, Dobrev PI, Malbeck J, Motyka V, Gaudinová A, Vaňková R (2004a) Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul 44:15–23CrossRefGoogle Scholar
  12. Blagoeva E, Dobrev PI, Jí M, Motyka V, Strnad M, Hanuš J, Vaňková R (2004b) Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. Physiol Plant 121:215–222PubMedCrossRefGoogle Scholar
  13. Blakesley D (1991) Uptake and metabolism of 6-benzyladenine in shoot cultures of Musa and Rhododendron. Plant Cell Tiss Org Cult 25:69–74CrossRefGoogle Scholar
  14. Brzobohatý B, Moore I, Palme K (1994) Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26:1483–1497PubMedCrossRefGoogle Scholar
  15. Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integrat Plant Biol 52:98–111CrossRefGoogle Scholar
  16. Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421PubMedGoogle Scholar
  17. Chen C-M (1997) Cytokinin biosynthesis and interconversion. Physiol Plant 101:665–673CrossRefGoogle Scholar
  18. Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362CrossRefGoogle Scholar
  19. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Org Cult 106:279–288CrossRefGoogle Scholar
  20. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim S-H (1997) Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 243:518–526PubMedCrossRefGoogle Scholar
  21. De Klerk G-J, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul 63:175–185CrossRefGoogle Scholar
  22. Dwivedi S, Vanková R, Motyka V, Herrera C, Zizkova E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glycosylation pathway in plants. Plant Growth Regul 61:231–242CrossRefGoogle Scholar
  23. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452PubMedCrossRefGoogle Scholar
  24. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840PubMedCrossRefGoogle Scholar
  25. George EF (1993) Plant propagation by tissue culture, part 1: the technology. Exegetics Ltd, LondonGoogle Scholar
  26. Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362PubMedCrossRefGoogle Scholar
  27. Havlíček L, Hanuš J, Veselý J, Leclerc S, Meijer L, Shaw G, Strnad M (1997) Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of Olomoucine and related compounds. J Med Chem 40:408–412PubMedCrossRefGoogle Scholar
  28. Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul 26:109–115CrossRefGoogle Scholar
  29. Ivanova M, Novák O, Strnad M, Van Staden J (2006) Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul 50:219–230CrossRefGoogle Scholar
  30. Kamínek M, Vaněk T, Motyka V (1987) Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120CrossRefGoogle Scholar
  31. Kamínek M, Motyka V, Vaková R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700CrossRefGoogle Scholar
  32. Kamínek M, Březinov A, Gaudinová A, Motyka V, Vaňková R, Zaăímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  33. Krikorian AD (1995) Hormones in tissue culture and micropropagation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 774–796Google Scholar
  34. Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197CrossRefGoogle Scholar
  35. Letham DS, Parker CW, Duke CC, Summons RE, MaCleod JK (1977) O-glucosylzeatin and related compounds—a new group of cytokinin metabolites. Ann Bot 41:261–263Google Scholar
  36. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology, vol 148. Academic Press, New York, pp 350–382Google Scholar
  37. Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros J-G, Moulinoux J-P (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536PubMedCrossRefGoogle Scholar
  38. Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118PubMedCrossRefGoogle Scholar
  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  40. Novák O, Tarkowski P, Tarkowská D, Dolezal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta 480:207–218CrossRefGoogle Scholar
  41. Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography—electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224PubMedCrossRefGoogle Scholar
  42. Ördög V, Stirk WA, Van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in three genera of microalgae from the Chlorophyta. J Phycol 40:88–95CrossRefGoogle Scholar
  43. Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D, Fehér A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul 32:129–141CrossRefGoogle Scholar
  44. Planchais S, Glab N, Tréhin C, Perennes C, Bureau J-M, Meijer L, Bergounioux C (1997) Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J 12:191–202PubMedCrossRefGoogle Scholar
  45. Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83PubMedCrossRefGoogle Scholar
  46. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  47. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  48. Schmülling T (2004) Cytokinin. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Academic Press/Elsevier Science, New York, pp 1–6Google Scholar
  49. Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252PubMedCrossRefGoogle Scholar
  50. Schnablová R, Synková H, Vicánková A, Burketová L, Eder J, Cvikrová M (2006) Transgenic ipt tobacco overproducing cytokinins overaccumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44:526–534PubMedCrossRefGoogle Scholar
  51. Spíchal L, Kryštof V, Paprskářová M, Lenobel R, Stýskala J, Binarová P, Cenklová V, De Veylder L, Inzé D, Kontopidis G, Fischer PM, Schmülling T, Strnad M (2007) Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J Biol Chem 282:14356–14363PubMedCrossRefGoogle Scholar
  52. Stoynova-Bakalova E, Petrov P (2009) Modulating zucchini cotyledon plate meristem activity by interactions between the cycline-dependent kinase inhibitor roscovitine and cytokinins. Plant Cell Tiss Org Cult 97:263–269CrossRefGoogle Scholar
  53. Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688CrossRefGoogle Scholar
  54. Strnad M, Hanus J, Vanek T, Kamínek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta). Phytochemistry 45:213–218CrossRefGoogle Scholar
  55. Tao G-Q, Letham DS, Hocart CH, Summons RE (1991) Inhibitors of cytokinin metabolism III. The inhibition of cytokinin N-glucosylation in radish cotyledons. J Plant Growth Regul 10:179–185CrossRefGoogle Scholar
  56. Tréhin C, Planchais S, Glab N, Perennes C, Tregear J, Bergounioux C (1998) Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta 206:215–224PubMedCrossRefGoogle Scholar
  57. Upfold SJ, Van Staden J (1990) Cytokinins in cut carnation flowers. VII. The effect of zeatin and dihydrozeatin derivatives on flower longevity. Plant Growth Regul 9:77–81CrossRefGoogle Scholar
  58. Valero-Aracama C, Kane M, Wilson S, Philman N (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul 60:43–49CrossRefGoogle Scholar
  59. Van Staden J, Crouch NR (1996) Benzyladenine and derivatives—their significance and interconversion in plants. Plant Growth Regul 19:153–175CrossRefGoogle Scholar
  60. Vuylsteke DR (1998) Shoot-tip culture for the propagation, conservation, and distribution of Musa germplasm. International Institute of Tropical Agriculture, IbadanGoogle Scholar
  61. Werbrouck SPO, Van der Jeugt B, Dewitte W, Prinsen E, Van Onckelen HA, Debergh PC (1995) The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep 14:662–665CrossRefGoogle Scholar
  62. Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297CrossRefGoogle Scholar
  63. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492PubMedCrossRefGoogle Scholar
  64. Zaffari GR, Peres LEP, Kerbauy GB (1998) Endogenous levels of cytokinins, indoleacetic acid, abscisic acid, and pigments in variegated somaclones of micropropagated banana leaves. J Plant Growth Regul 17:59–61CrossRefGoogle Scholar
  65. Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2012) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.1012.1003
  66. Zatloukal M, Gemrotová M, Dolezal K, Havlícek L, Spíchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adeyemi O. Aremu
    • 1
  • Michael W. Bairu
    • 1
  • Ondřej Novák
    • 2
  • Lenka Plačková
    • 2
    • 3
  • Marek Zatloukal
    • 2
    • 3
  • Karel Doležal
    • 2
    • 3
  • Jeffrey F. Finnie
    • 1
  • Miroslav Strnad
    • 2
    • 3
  • Johannes Van Staden
    • 1
  1. 1.Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  2. 2.Laboratory of Growth Regulators, Institute of Experimental Botany AS CRPalacký UniversityOlomoucCzech Republic
  3. 3.Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural ResearchPalacký UniversityOlomoucCzech Republic

Personalised recommendations