, Volume 236, Issue 4, pp 1305–1313 | Cite as

In planta production of a candidate vaccine against bovine papillomavirus type 1

  • Andrew J. LoveEmail author
  • Sean N. Chapman
  • Slavica Matic
  • Emanuela Noris
  • George P. Lomonossoff
  • Michael Taliansky
Original Article


Bovine papillomavirus type 1 (BPV-1) is an economically important virus that induces tumourigenic pathologies in horses and cows. Given that the BPV-1 L1 major coat protein can self-assemble into highly immunogenic higher-order structures, we transiently expressed it in Nicotiana benthamiana as a prelude to producing a candidate vaccine. It was found that plant codon optimization of L1 gave higher levels of expression than its non-optimized counterpart. Following protein extraction, we obtained high yields (183 mg/kg fresh weight leaf tissue) of relatively pure L1, which had self-assembled into virus-like particles (VLPs). We found that these VLPs elicited a highly specific and strong immune response, and therefore they may have utility as a potential vaccine. This is the first report demonstrating the viable production of a candidate BPV vaccine protein in plants.


Bovine papillomavirus Codon optimization Plant expression Vaccine protein Virus-like particles 



Bovine papillomavirus


Cowpea mosaic virus


Cottontail rabbit papillomavirus


Enzyme-linked immunosorbent assay


Human papillomavirus


2-Morpholinoethanesulphonic acid


Phosphate-buffered saline


Sodium dodecyl sulphate-polyacrylamide gel electrophoresis


Untranslated regions


Virus-like particle



The authors would like to thank Prof. Lesley Torrance and Graham Cowan (The James Hutton Institute, Invergowrie, Scotland, UK) for helpful and critical discussions. We would also like to thank Profs. Lubna Nasir and Saveria Campo (Glasgow University, Glasgow, Scotland, UK) for provision of the BPV-1 clone. We are very grateful to Prof. Reinhard Kirnbauer and Dr. Sabine Brandt (University of Vienna Medical School, Vienna, Austria) for the provision of insect cell-produced BPV L1 VLPs. This was funded by the EU PLAPROVA KBBE-2008-227056 grant, and the work of AJL, SNC and MT was also partly funded by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division.

Supplementary material

425_2012_1692_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)


  1. Ashrafi GH, Tsirimonaki E, Marchetti B, O’Brien PM, Sibbet GJ, Andrew L, Campo MS (2002) Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 21:248–259PubMedCrossRefGoogle Scholar
  2. Biemelt S, Sonnewald U, Gaimbacher P, Willmitzer L, Muller M (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9220PubMedCrossRefGoogle Scholar
  3. Bogaert L, Martens A, Van Poucke M, Ducatelle R, De Cock H, Dewulf J, De Baere C, Peelman L, Gasthuys F (2008) High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet Microbiol 129:58–68PubMedCrossRefGoogle Scholar
  4. Borzacchiello G, Roperto F (2008) Bovine papillomaviruses, papillomas and cancer in cattle. Vet Res 39:45PubMedCrossRefGoogle Scholar
  5. Caciagli P, Piles VM, Marian D, Vecchiati M, Masenga V, Mason G, Falcioni T, Noris E (2009) Virion stability is important for the circulative transmission of tomato yellow leaf curl Sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility. J Virol 83:5784–5795PubMedCrossRefGoogle Scholar
  6. Campo M (1995) Infection by bovine papillomavirus and prospects for vaccination. Trends Microbiol 3:92–97PubMedCrossRefGoogle Scholar
  7. Campo MS (2003) Vaccination against papillomavirus in cattle. Clin Dermatol 15:275–283CrossRefGoogle Scholar
  8. Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270PubMedCrossRefGoogle Scholar
  9. Fernandez-San Millan A, Ortigosa SM, Hervas-Stubbs S, Corral-Martinez P, Segui-Simarro JM, Gaetan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441PubMedCrossRefGoogle Scholar
  10. Fischer R, Vaquero-Martin C, Sack M, Drossard J, Emans N, Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Bioch 30:113–116Google Scholar
  11. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158PubMedCrossRefGoogle Scholar
  12. Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCrossRefGoogle Scholar
  13. Giorgi C, Franconi R, Rybicki EP (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccines 8:913–924CrossRefGoogle Scholar
  14. Jarrett WFH, Oneil BW, Gaukroger JM, Laird HM, Smith KT, Campo MS (1990) Studies on vaccination against papillomaviruses: a comparison of purified virus, tumor extract and transformed-cells in prophylactic vaccination. Vet Rec 126:449–452PubMedGoogle Scholar
  15. Jarrett WFH, Smith KT, Oneil BW, Gaukroger JM, Chandrachud LM, Grindlay GJ, Mcgarvie GM, Campo MS (1991) Studies on vaccination against papillomaviruses: prophylactic and therapeutic vaccination with recombinant structural proteins. Virology 184:33–42PubMedCrossRefGoogle Scholar
  16. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Nat Acad Sci USA 89:12180–12184PubMedCrossRefGoogle Scholar
  17. Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, Williamson AL, Rybicki EP (2006) Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol 13:845–853PubMedCrossRefGoogle Scholar
  18. Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56PubMedCrossRefGoogle Scholar
  19. Kurg R, Uusen P, Sepp T, Sepp M, Abroi A, Ustav M (2009) Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. Virology 386:353–359PubMedCrossRefGoogle Scholar
  20. Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Method Enzymol 3:447–454CrossRefGoogle Scholar
  21. Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102PubMedCrossRefGoogle Scholar
  22. Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240PubMedCrossRefGoogle Scholar
  23. Liu XF, Schuck S, Stenlund A (2010) Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. J Virol 84:4264–4276PubMedCrossRefGoogle Scholar
  24. Luisoni E, Milne RG, Vecchiati M (1995) Purification of tomato yellow leaf curl geminivirus. New Microbiol 18:253–260PubMedGoogle Scholar
  25. Ma JKC, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599PubMedCrossRefGoogle Scholar
  26. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469PubMedCrossRefGoogle Scholar
  27. Matic S, Rinaldi R, Masenga V, Noris E (2011) Efficient production of chimeric Human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 11:106PubMedCrossRefGoogle Scholar
  28. Matic S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E (2012) Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 10:410–421PubMedCrossRefGoogle Scholar
  29. Mohr IJ, Clark R, Sun S, Androphy EJ, Macpherson P, Botchan MR (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex-formation with the E2 transactivator. Science 250:1694–1699PubMedCrossRefGoogle Scholar
  30. Nasir L, Campo MS (2008) Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 19:243–254PubMedCrossRefGoogle Scholar
  31. Paintsil J, Muller M, Picken M, Gissmann L, Zhou JA (1998) Calcium is required in reassembly of bovine papillomavirus in vitro. J Gen Virol 79:1133–1141PubMedGoogle Scholar
  32. Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30:789–798PubMedCrossRefGoogle Scholar
  33. Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637PubMedCrossRefGoogle Scholar
  34. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693PubMedCrossRefGoogle Scholar
  35. Shafti-Keramat S, Schellenbacher C, Handisurya A, Christensen N, Reininger B, Brandt S, Kirnbauer R (2009) Bovine papillomavirus type 1 (BPV1) and BPV2 are closely related serotypes. Virology 393:1–6PubMedCrossRefGoogle Scholar
  36. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta 1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485PubMedCrossRefGoogle Scholar
  37. Thones N, Muller M (2007) Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virology 369:375–388PubMedCrossRefGoogle Scholar
  38. Tong X, Salgia R, Li JL, Griffin JD, Howley PM (1997) The bovine papillomavirus E6 protein binds to the LD motif repeats of paxillin and blocks its interaction with vinculin and the focal adhesion kinase. J Biol Chem 272:33373–33376PubMedCrossRefGoogle Scholar
  39. Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 148:1771–1786PubMedCrossRefGoogle Scholar
  40. Waheed MT, Thones N, Muller M, Hassan SW, Razavi NM, Lossl E, Kaul HP, Lossl AG (2011) Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res 20:271–282PubMedCrossRefGoogle Scholar
  41. Wolf M, Garcea RL, Grigorieff N, Harrison SC (2010) Subunit interactions in bovine papillomavirus. Proc Nat Acad Sci USA 107:6298–6303PubMedCrossRefGoogle Scholar
  42. Zago M, Campo MS, O’Brien V (2004) Cyclin A expression and growth in suspension can be uncoupled from p27 deregulation and extracellular signal-regulated kinase activity in cells transformed by bovine papillomavirus type 4 E5. J Gen Virol 85:3585–3595PubMedCrossRefGoogle Scholar
  43. Zhao Q, Modis Y, High K, Towne V, Meng Y, Wang Y, Alexandroff J, Brown M, Carragher B, Potter CS, Abraham D, Wohlpart D, Kosinski M, Washabaugh MW, Sitrin RD (2012) Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol J 9:52PubMedCrossRefGoogle Scholar
  44. Zimmermann H, Koh CH, Degenkolbe R, O’Connor MJ, Muller A, Steger G, Chen JJ, Lui Y, Androphy E, Bernard HU (2000) Interaction with CBP/p300 enables the bovine papillomavirus type 1 E6 oncoprotein to downregulate CBP/p300-mediated transactivation by p53. J Gen Virol 81:2617–2623PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andrew J. Love
    • 1
    Email author
  • Sean N. Chapman
    • 1
  • Slavica Matic
    • 2
  • Emanuela Noris
    • 2
  • George P. Lomonossoff
    • 3
  • Michael Taliansky
    • 1
  1. 1.The James Hutton Institute (Dundee)DundeeUK
  2. 2.Istituto di Virologia VegetaleTurinItaly
  3. 3.Department of Biological ChemistryJohn Innes CentreNorwichUK

Personalised recommendations