, Volume 236, Issue 5, pp 1405–1417 | Cite as

Construction and analysis of EST libraries of the trans-polyisoprene producing plant, Eucommia ulmoides Oliver

  • Nobuaki Suzuki
  • Hirotaka Uefuji
  • Takashi Nishikawa
  • Yukio Mukai
  • Atsushi Yamashita
  • Masahira Hattori
  • Naotake Ogasawara
  • Takeshi Bamba
  • Ei-ichiro Fukusaki
  • Akio Kobayashi
  • Yoshiyuki Ogata
  • Nozomu Sakurai
  • Hideyuki Suzuki
  • Daisuke Shibata
  • Yoshihisa Nakazawa
Original Article


Eucommia ulmoides Oliver is one of a few woody plants capable of producing abundant quantities of trans-polyisoprene rubber in their leaves, barks, and seed coats. One cDNA library each was constructed from its outer stem tissue and inner stem tissue. They comprised a total of 27,752 expressed sequence tags (ESTs) representing 10,520 unigenes made up of 4,302 contigs and 6,218 singletons. Homologues of genes coding for rubber particle membrane proteins that participate in the synthesis of high-molecular poly-isoprene in latex were isolated, as well as those encoding known major latex proteins (MLPs). MLPs extensively shared ESTs, indicating their abundant expression during trans-polyisoprene rubber biosynthesis. The six mevalonate pathway genes which are implicated in the synthesis of isopentenyl diphosphate (IPP), a starting material of poly-isoprene biosynthesis, were isolated, and their role in IPP biosynthesis was confirmed by functional complementation of suitable yeast mutants. Genes encoding five full-length trans-isoprenyl diphosphate synthases were also isolated, and two among those synthesized farnesyl diphosphate from IPP and dimethylallyl diphosphate, an assumed intermediate of rubber biosynthesis. This study should provide a valuable resource for further studies of rubber synthesis in E. ulmoides.


Eucommia ulmoides Oliv. EST Hardy rubber tree Isoprenoid Prenyltransferase Trans-polyisoprene 



Dimethylallyl diphosphate


Deoxy-xylulose phosphate


Farnesyl diphosphate


Geranylgeranyl diphosphate




Isopentenyl diphosphate


Inner stem tissue


Methylerythritol phosphate


Major latex protein


Outer stem tissue


Rubber elongation factor


Rubber particle membrane protein


Small rubber particle protein


Trans-isoprenyl diphosphate synthase



This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).

Supplementary material

425_2012_1679_MOESM1_ESM.pdf (11 kb)
Supplementary material 1 (PDF 11 kb)
425_2012_1679_MOESM2_ESM.pdf (12 kb)
Supplementary material 2 (PDF 11 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Bamba T, Fukusaki E, Nakazawa Y, Kobayashi A (2002) In situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215:934–939PubMedCrossRefGoogle Scholar
  3. Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides Oliver. Z Naturforsch C 65:363–372PubMedGoogle Scholar
  4. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755PubMedCrossRefGoogle Scholar
  5. Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154PubMedCrossRefGoogle Scholar
  6. Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186PubMedCrossRefGoogle Scholar
  7. Call VB, Dilcher DL (1997) The fossil record of Eucommia (Eucommiaceae) in North America. Am J Bot 84:798–814PubMedCrossRefGoogle Scholar
  8. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  9. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  10. Cunillera N, Arro M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780PubMedCrossRefGoogle Scholar
  11. Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J Biol Chem 264:18608–18617PubMedGoogle Scholar
  12. Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331:615–621PubMedGoogle Scholar
  13. Enoki M, Doi Y, Iwata T (2003) Oxidative degradation of cis-and trans-1,4-polyisoprenes and vulcanized natural rubber with enzyme-mediator systems. Biomacromolecules 4:314–320PubMedCrossRefGoogle Scholar
  14. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  15. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  16. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  17. Fujisaki S, Nishino T, Katsuki H (1986) Isoprenoid synthesis in Escherichia coli. Separation and partial purification of four enzymes involved in the synthesis. J Biochem 99:1327–1337PubMedGoogle Scholar
  18. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430PubMedCrossRefGoogle Scholar
  19. Goyvaerts E, Dennis M, Light D, Chua NH (1991) Cloning and sequencing of the cDNA encoding the rubber elongation factor of Hevea brasiliensis. Plant Physiol 97:317–321PubMedCrossRefGoogle Scholar
  20. Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858CrossRefGoogle Scholar
  21. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676PubMedCrossRefGoogle Scholar
  22. Hendricks SB, Wildman SG, Jones EJ (1945) Differentiation of rubber and gutta hydrocarbons in plant materials. Arch Biochem 7:427–438Google Scholar
  23. Hirooka K, Ohnuma S, Koike-Takeshita A, Koyama T, Nishino T (2000) Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus. Eur J Biochem 267:4520–4528PubMedCrossRefGoogle Scholar
  24. Hu SY (1979) A contribution to our knowledge of tu-chung-Eucommia ulmoides. Am J Chin Med 7:5–37PubMedCrossRefGoogle Scholar
  25. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  26. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576PubMedCrossRefGoogle Scholar
  27. Kato S, Ohtoko K, Ohtake H, Kimura T (2005) Vector-capping: a simple method for preparing a high-quality full-length cDNA library. DNA Res 12:53–62PubMedCrossRefGoogle Scholar
  28. Kent EG, Swinney FB (1966) Properties and application of trans-1,4-polyisoprene. Ind Eng Chem Prod Res Dev 5:134–138CrossRefGoogle Scholar
  29. Kim IJ, Ryu SB, Kwak YS, Kang H (2004) A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. J Exp Bot 55:377–385PubMedCrossRefGoogle Scholar
  30. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492PubMedCrossRefGoogle Scholar
  31. Koyama T (1999) Molecular analysis of prenyl chain elongating enzymes. Biosci Biotechnol Biochem 63:1671–1676PubMedCrossRefGoogle Scholar
  32. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627PubMedCrossRefGoogle Scholar
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  34. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274PubMedCrossRefGoogle Scholar
  35. Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN Jr, Volkman BF (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76:237–243PubMedCrossRefGoogle Scholar
  36. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365PubMedCrossRefGoogle Scholar
  37. Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proc Natl Acad Sci USA 92:2328–2332PubMedCrossRefGoogle Scholar
  38. Nakazawa Y, Bamba T, Takeda T, Uefuji H, Harada Y, Li X, Chen R, Inoue S, Tutumi M, Shimizu T, Su YQ, Gyokusen K, Fukusaki E, Kobayashi A (2009) Production of Eucommia-rubber from Eucommia ulmoides Oliv. (hardy rubber tree). Plant Biotechnol 26:71–79CrossRefGoogle Scholar
  39. Nessler CL, Burnett RJ (1992) Organization of the major latex protein gene family in opium poppy. Plant Mol Biol 20:749–752PubMedCrossRefGoogle Scholar
  40. Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106PubMedCrossRefGoogle Scholar
  41. Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK, Beuning LL, Nagegowda DA, Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228Google Scholar
  42. Nishitani C, Demura T, Fukuda H (2002) Analysis of early processes in wound-induced vascular regeneration using TED3 and ZeHB3 as molecular markers. Plant Cell Physiol 43:79–90PubMedCrossRefGoogle Scholar
  43. Ohashi-Ito K, Fukuda H (2003) HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44:1350–1358PubMedCrossRefGoogle Scholar
  44. Ohnuma S, Hirooka K, Ohto C, Nishino T (1997) Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 272:5192–5198PubMedCrossRefGoogle Scholar
  45. Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T (1998) A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J Biol Chem 273:26705–26713PubMedCrossRefGoogle Scholar
  46. Okada K, Kainou T, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur J Biochem 255:52–59PubMedCrossRefGoogle Scholar
  47. Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056PubMedCrossRefGoogle Scholar
  48. Pang Y, Zhang J, Cao J, Yin SY, He XQ, Cui KM (2008) Phloem transdifferentiation from immature xylem cells during bark regeneration after girding in Eucommia ulmoides Oliv. J Exp Bot 59:1341–1351PubMedCrossRefGoogle Scholar
  49. Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623PubMedCrossRefGoogle Scholar
  50. Riaño-Pachón DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinforma 8:42CrossRefGoogle Scholar
  51. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574PubMedCrossRefGoogle Scholar
  52. Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812PubMedCrossRefGoogle Scholar
  53. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  54. Roth WB, Carr ME, Davis EA, Bagby MO (1985) New sources of gutta-percha in Garrya flavescens and G. wrightii. Phytochemistry 24:183–184CrossRefGoogle Scholar
  55. Sando T, Takaoka C, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Fukusaki E, Kobatashi A (2008a) Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Biosci Biotechnol Biochem 72:2049–2060PubMedCrossRefGoogle Scholar
  56. Sando T, Takeno S, Watanabe N, Okumoto H, Kuzuyama T, Yamashita A, Hattori M, Ogasawara N, Fukusaki E, Kobayashi A (2008b) Cloning and characterization of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis. Biosci Biotechnol Biochem 72:2903–2917PubMedCrossRefGoogle Scholar
  57. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 37:3465–3472PubMedCrossRefGoogle Scholar
  58. Schlesinger W, Leeper HM (1951) Chicle-cis- and trans- polyisoprenes from a single plant species. Ind Eng Chem 43:398–403CrossRefGoogle Scholar
  59. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316(Pt 1):73–80PubMedGoogle Scholar
  60. Tangpakdee J, Tanaka Y, Shiba KI, Kawahara S, Sakurai K, Suzuki Y (1997) Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry 45:75–80CrossRefGoogle Scholar
  61. Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci USA 93:15018–15023PubMedCrossRefGoogle Scholar
  62. The angiosperm phylogeny group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  63. Van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529PubMedCrossRefGoogle Scholar
  64. Wang K, Ohnuma S (1999) Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24:445–451PubMedCrossRefGoogle Scholar
  65. Weiss FE (1891) VIII. The Caoutchouc-containing cells of Eucommia ulmoides, Oliver. Transact Linnean Soc London 2nd Series: Botany 3:243–254Google Scholar
  66. Zhong R, Ye ZH (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–2152PubMedGoogle Scholar
  67. Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nobuaki Suzuki
    • 1
  • Hirotaka Uefuji
    • 6
  • Takashi Nishikawa
    • 1
  • Yukio Mukai
    • 2
  • Atsushi Yamashita
    • 3
  • Masahira Hattori
    • 3
  • Naotake Ogasawara
    • 4
  • Takeshi Bamba
    • 1
  • Ei-ichiro Fukusaki
    • 1
  • Akio Kobayashi
    • 1
  • Yoshiyuki Ogata
    • 5
  • Nozomu Sakurai
    • 5
  • Hideyuki Suzuki
    • 5
  • Daisuke Shibata
    • 5
  • Yoshihisa Nakazawa
    • 1
    • 6
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Department of BioscienceNagahama Institute of Bio-Science and TechnologyNagahamaJapan
  3. 3.Kitasato Institute for Life SciencesKitasato UniversitySagamiharaJapan
  4. 4.Department of Information Systems, Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  5. 5.Kazusa DNA Research InstituteKisarazuJapan
  6. 6.Technical Research InstituteHitachi Zosen CorporationOsakaJapan

Personalised recommendations