Planta

, Volume 236, Issue 4, pp 1261–1273 | Cite as

Kinetic and phylogenetic analysis of plant polyamine uptake transporters

  • Vaishali Mulangi
  • Marcus C. Chibucos
  • Vipaporn Phuntumart
  • Paul F. Morris
Original Article

Abstract

The rice gene POLYAMINE UPTAKE TRANSPORTER1 (PUT1) was originally identified based on its homology to the polyamine uptake transporters LmPOT1 and TcPAT12 in Leishmania major and Trypanosoma cruzi, respectively. Here we show that five additional transporters from rice and Arabidopsis that cluster in the same clade as PUT1 all function as high affinity spermidine uptake transporters. Yeast expression assays of these genes confirmed that uptake of spermidine was minimally affected by 166 fold or greater concentrations of amino acids. Characterized polyamine transporters from both Arabidopsis thaliana and Oryza sativa along with the two polyamine transporters from L. major and T. cruzi were aligned and used to generate a hidden Markov model. This model was used to identify significant matches to proteins in other angiosperms, bryophytes, chlorophyta, discicristates, excavates, stramenopiles and amoebozoa. No significant matches were identified in fungal or metazoan genomes. Phylogenic analysis showed that some sequences from the haptophyte, Emiliania huxleyi, as well as sequences from oomycetes and diatoms clustered closer to sequences from plant genomes than from a homologous sequence in the red algal genome Galdieria sulphuraria, consistent with the hypothesis that these polyamine transporters were acquired by horizontal transfer from green algae. Leishmania and Trypansosoma formed a separate cluster with genes from other Discicristates and two Entamoeba species. We surmise that the genes in Entamoeba species were acquired by phagotrophy of Discicristates. In summary, phylogenetic and functional analysis has identified two clades of genes that are predictive of polyamine transport activity.

Keywords

Arabidopsis Hidden Markov model Michaelis–Menten Oryza PUT1 Spermidine 

Abbreviations

HMM

Hidden Markov model

MEME

Multiple Em for Motif Elicitation

PA

Polyamines

PM

Plasma membrane

Supplementary material

425_2012_1668_MOESM1_ESM.doc (228 kb)
Supplementary material 1 (DOC 228 kb)

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Alcazar R, Garcia-Martinez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43:425–436PubMedCrossRefGoogle Scholar
  3. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  4. Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandin FD, Gonzalez ME, Ruiz OA, Carrasco P (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286PubMedCrossRefGoogle Scholar
  5. Alsmark UC, Sicheritz-Ponten T, Foster PG, Hirt RP, Embley TM (2009) Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis. Methods Mol Biol 532:489–500PubMedCrossRefGoogle Scholar
  6. Antognoni F, Pistocchi R, Bagni N (1993) Uptake competition between polyamines and analogues in carrot protoplasts. Plant Physiol Biochem 31:693–698Google Scholar
  7. Antognoni F, Fornale S, Grimmer C, Komor E, Bagni N (1998) Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527CrossRefGoogle Scholar
  8. Aouida M, Anick L, Poulin R, Ramatar D (2005) AGP2 encodes the major permease for high affinity polyamine transport in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276PubMedCrossRefGoogle Scholar
  9. Aouida M, Poulin R, Ramotar D (2010) The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem 285:6275–6284PubMedCrossRefGoogle Scholar
  10. Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108:314–320CrossRefGoogle Scholar
  11. Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer ET, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Srinivasamoorthy G, Stoeckert CJ Jr, Thibodeau R, Treatman C, Wang H (2010) EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 38(Database issue):D415–D419Google Scholar
  12. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373PubMedCrossRefGoogle Scholar
  13. Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–275Google Scholar
  14. Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914PubMedCrossRefGoogle Scholar
  15. Carrillo C, Canepa G, Algranati I, Pereira C (2006) Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Bioph Res Co 344:936–940CrossRefGoogle Scholar
  16. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333PubMedCrossRefGoogle Scholar
  17. Chattopadhyay M, Tabor C, Tabor H (2002) Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe). Proc Natl Acad Sci USA 99:10330–10334PubMedCrossRefGoogle Scholar
  18. Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261–2265PubMedCrossRefGoogle Scholar
  19. Chibucos MC, Morris PF (2006) Levels of polyamines and kinetic characterization of their uptake in the soybean pathogen Phytophthora sojae. Appl Environ Microbiol 72:3250–3256CrossRefGoogle Scholar
  20. Cohen SS (1998) A guide to the polyamines. Oxford University Press New York, 595 ppGoogle Scholar
  21. Couee I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tiss Org 76:1–10CrossRefGoogle Scholar
  22. Cuevas J, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio A, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105PubMedCrossRefGoogle Scholar
  23. Cvikrova M, Gemperlova L, Eder J, Zazimalova E (2008) Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents. Plant Cell Rep 27:1147–1156PubMedCrossRefGoogle Scholar
  24. Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410PubMedCrossRefGoogle Scholar
  25. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45PubMedCrossRefGoogle Scholar
  26. Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275PubMedCrossRefGoogle Scholar
  27. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559PubMedCrossRefGoogle Scholar
  28. Hasne M-P, Uhlman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194PubMedCrossRefGoogle Scholar
  29. Havelange A, Lejeune P, Bernier G, Kaur-Sawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96:59–65CrossRefGoogle Scholar
  30. Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642PubMedCrossRefGoogle Scholar
  31. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophy Res Co 271:559–564CrossRefGoogle Scholar
  32. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573PubMedCrossRefGoogle Scholar
  33. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefGoogle Scholar
  34. Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325PubMedCrossRefGoogle Scholar
  35. Mayer MJ, Michael AJ (2003) Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase Includes ornithine limitation. J Biochem 134:765–772PubMedCrossRefGoogle Scholar
  36. Moschou P, Paschalidis K, Delis I, Andriopoulou A, Lagiotis G, Yakoumakis D, Roubelakis-Angelakis K (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724PubMedCrossRefGoogle Scholar
  37. Mou X, Sun S, Rayapati P, Moran MA (2010) Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Microb Ecol 58:311–321CrossRefGoogle Scholar
  38. Mou X, Vila-Costa M, Sun S, Zhao W, Sharma S, Moran MA (2011) Metatranscriptomic signature of exogenous polyamine utilization by coastal bacterioplankton. Environ Microbiol Rep 3:798–806CrossRefGoogle Scholar
  39. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726PubMedCrossRefGoogle Scholar
  40. Mulangi V, Phuntumart V, Aouida M, Ramotar D, Morris P (2012) Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta 235:1–11PubMedCrossRefGoogle Scholar
  41. Muscle E (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  42. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847PubMedCrossRefGoogle Scholar
  43. Ndayiragije A, Lutts S (2007) Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant Soil 291:225–238CrossRefGoogle Scholar
  44. Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252PubMedCrossRefGoogle Scholar
  45. Ohe M, Kobayashi M, Niitsu M, Bagni N, Matsuzaki S (2005) Analysis of polyamine metabolism in soybean seedlings using N-15-labelled putrescine. Phytochemistry 66:523–528PubMedCrossRefGoogle Scholar
  46. Ra Friedman, Levin N, Altman A (1986) Presence and identification of polyamines in xylem and phloem exudates of plants. Plant Physiol 82:1154–1157CrossRefGoogle Scholar
  47. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240PubMedCrossRefGoogle Scholar
  48. Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642PubMedCrossRefGoogle Scholar
  49. Serafini-Fracassini D, Di Sandro A, Del Duca S (2010) Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiol Biochem 48:602–611PubMedCrossRefGoogle Scholar
  50. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, Carlson CA, Smith RD, Giovanonni SJ (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105PubMedCrossRefGoogle Scholar
  51. Tachihara K, Uemura T, Kashiwagi K, Igarashi K (2005) Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280:12637–12642PubMedCrossRefGoogle Scholar
  52. Takahashi T, Kakehi J (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6PubMedCrossRefGoogle Scholar
  53. Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215PubMedCrossRefGoogle Scholar
  54. Tomitori HK, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K (2001) Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353:681–688PubMedCrossRefGoogle Scholar
  55. Uemura T, Tomonari Y, Kashiwagi K, Igarashi K (2004) Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Bioph Res Co 315:1082–1087CrossRefGoogle Scholar
  56. Uemura T, Kashiwagi K, Igarashi K (2005a) Uptake of putrescine and spermidine by Gap1p on the plasma membrane in Saccharomyces cerevisiae. Biochem Bioph Res Co 328:1028–1033CrossRefGoogle Scholar
  57. Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005b) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652PubMedCrossRefGoogle Scholar
  58. Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741PubMedCrossRefGoogle Scholar
  59. Wang PY, Rao JN, Zou T, Liu L, Xiao L, Yu TX, Turner DJ, Gorospe M, Wang JY (2010) Post-transcriptional regulation of MEK-1 by polyamines through the RNA-binding protein HuR modulating intestinal epithelial apoptosis. Biochem J 426:293–306PubMedCrossRefGoogle Scholar
  60. Ye W, Wang X, Tao K, Lu Y, Dai T, Dong S, Dou D, Gijzen M, Wang Y (2011) Digital gene expression profiling of the Phytophthora sojae transcriptome. Mol Plant Microbe Interact 24:1530–1539PubMedCrossRefGoogle Scholar
  61. Yoda H, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H (2009) Polyamines as a common source of hydrogen peroxide in host and nonhost hypersensitive response during pathogen infection. Plant Mol Biol 70:103–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vaishali Mulangi
    • 1
  • Marcus C. Chibucos
    • 2
  • Vipaporn Phuntumart
    • 1
  • Paul F. Morris
    • 1
  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA
  2. 2.Department of Microbiology and Immunology, Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations