Advertisement

Planta

, Volume 235, Issue 6, pp 1431–1447 | Cite as

Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress

  • Leonardo Casieri
  • Karine Gallardo
  • Daniel Wipf
Rapid Communication

Abstract

Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H+-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.

Keywords

Arbuscular mycorrhiza Glomus intraradices Medicago truncatula Sulphate Transporters 

Abbreviations

AM

Arbuscular mycorrhiza

AtSULTR

Arabidopsis thaliana sulphate transporter

CNS

Carbon, nitrogen, sulphur

CT

Cycle threshold

DW

Dry weight

FW

Fresh weight

Mt

Medicago truncatula

MtBcp1a

Medicago truncatula blue copper protein 1a

MtPT4

Medicago truncatula phosphate transporter 4

MtSULTR

Medicago truncatula sulphate transporter

Myc

Mycorrhized

Myc:Myc

Mycorrhized compartments of Myc plants

NM

Non-mycorrhized

NM:Myc

Non-mycorrhized compartments of Myc plants

NM:NM

Non-mycorrhized compartments of NM plants

OsSULTR

Orzya sativa sulphate transporter

qPCR

Quantitative real time polymerase chain reaction

SULTR

Sulphate transporter

Wpi

Weeks post inoculation

Notes

Acknowledgments

The present work was supported by funding from the Regional Council of Burgundy (2009–9201AAO040S00680) and by the National Agency for Research [ANR-10-BLAN-1604-01(TRANSMUT)]. The authors would like to thank Prof. J.-C.Davidian (BPMP Montpellier, France) for the discussions on S-metabolism and SULTRs’ importance in other model plants, C. Gutjahr (LMU Munich, Germany) for the help regarding plant physiology and plant’s responses to AM interaction, and the following members of the UMR Agroecology Dijon France: R. Thompson and C. Le Signor for helpful discussions throughout the project, D. van Tuinen for the bio-informatic help and the comments about plant’s SULTRs phylogeny, C. Schneider for creating scripts allowing analyses of leaf surface, H. Stockinger for the help with image format, A-L Santoni for the elemental analyses, A. Colombet and V. Monfort for providing the inoculum.

Supplementary material

425_2012_1645_MOESM1_ESM.txt (40 kb)
Supplementary material 1 (TXT 39 kb)
425_2012_1645_MOESM2_ESM.doc (134 kb)
Supplementary material 2 (DOC 134 kb)
425_2012_1645_MOESM3_ESM.doc (160 kb)
Supplementary material 3 (DOC 159 kb)
425_2012_1645_MOESM4_ESM.doc (126 kb)
Supplementary material 4 (DOC 126 kb)
425_2012_1645_MOESM5_ESM.doc (172 kb)
Supplementary material 5 (DOC 172 kb)
425_2012_1645_MOESM6_ESM.doc (188 kb)
Supplementary material 6 (DOC 188 kb)
425_2012_1645_MOESM7_ESM.doc (204 kb)
Supplementary material 7 (DOC 204 kb)

References

  1. Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560PubMedCrossRefGoogle Scholar
  2. Allen WM, Patterson DS, Slater TF (1974) A biochemical study of experimental Johne’s disease. Protein metabolism in sheep and mice. J Comp Pathol 84:391–398PubMedCrossRefGoogle Scholar
  3. Baier MC, Keck M, Gödde V, Niehaus K, Küster H, Hohnjec N (2010) Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152:1000–1014PubMedCrossRefGoogle Scholar
  4. Banerjee R, Evande R, Kabil O, Ojha S, Taoka S (2003) Reaction mechanism and regulation of cystathionine beta-synthase. Biochim Biophys Acta 1647:30–35PubMedGoogle Scholar
  5. Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152:1716–1730PubMedCrossRefGoogle Scholar
  6. Benning C, Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280:2397–2400PubMedCrossRefGoogle Scholar
  7. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017PubMedCrossRefGoogle Scholar
  8. Buchner P, Stuiver CE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408PubMedCrossRefGoogle Scholar
  9. Chen A, Hu J, Sun S, Xu G (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831PubMedCrossRefGoogle Scholar
  10. Cherest H, Davidien J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145:627–635PubMedGoogle Scholar
  11. Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:281–293PubMedCrossRefGoogle Scholar
  12. Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. 2. Uptake and translocation of phosphorus, zinc and sulfur. New Phytol 81:43–52CrossRefGoogle Scholar
  13. Davidian J-C, Hatzfeld Y, Cathala N, Tagmount A, Vidmar JJ (2000) Sulfate uptake and transport in plants. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects. Paul Haupt, Bern, pp 19–40Google Scholar
  14. Eriksen J, Askegaard M (2000) Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agric Ecosyst Environ 78:107–114CrossRefGoogle Scholar
  15. Ferrol N, Pérez-Tienda J (2009) Coordinated nutrient exchange in arbuscular mycorrhiza. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—functional processes and ecological impact. Springer, Berlin, pp 73–87CrossRefGoogle Scholar
  16. Foley JA, DeFries R, Asner JP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 209:570–574CrossRefGoogle Scholar
  17. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Sign 11:861–905CrossRefGoogle Scholar
  18. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528PubMedCrossRefGoogle Scholar
  19. Gerdemann JW (1968) Vescicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–441CrossRefGoogle Scholar
  20. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10PubMedCrossRefGoogle Scholar
  21. Gordon-Weeks R, Tong Y, Davies TG, Leggewie G (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3144PubMedCrossRefGoogle Scholar
  22. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  23. Gray LE, Gerdemann JW (1973) Uptake of sulphur-35 by vesicular arbuscular mycorrhizae. Plant Soil 39:687–689CrossRefGoogle Scholar
  24. Guether M, Balestrini R, Hannah MA, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212PubMedCrossRefGoogle Scholar
  25. Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83PubMedCrossRefGoogle Scholar
  26. Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070PubMedCrossRefGoogle Scholar
  27. Guo T, Zhang JL, Christie P, Li XL (2007) Pungency of spring onion as affected by inoculation with arbuscular mycorrhizal fungi and sulfur supply. J Plant Nutr 30:1023–1034CrossRefGoogle Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  29. Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429PubMedCrossRefGoogle Scholar
  30. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd edn. Commonwealth Agricultural Bureaux, Farnham RoyalGoogle Scholar
  31. Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K (2006) Proteomic and transcriptomic analysis of Arabidopsis seed: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulphur nutrition. Plant J 48:557–571PubMedCrossRefGoogle Scholar
  32. Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136PubMedCrossRefGoogle Scholar
  33. Hohnjec N, Vieweg ME, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301PubMedCrossRefGoogle Scholar
  34. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  35. Javot H, Penmetsa VR, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ (2011) Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68:954–965PubMedCrossRefGoogle Scholar
  36. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  37. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29PubMedCrossRefGoogle Scholar
  38. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244CrossRefGoogle Scholar
  39. Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis: evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204PubMedCrossRefGoogle Scholar
  40. Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Bucher M, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704PubMedCrossRefGoogle Scholar
  41. Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415PubMedCrossRefGoogle Scholar
  42. Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842PubMedCrossRefGoogle Scholar
  43. Krusell L, Krause K, Ott T, Desbrosses G, Kramer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636PubMedCrossRefGoogle Scholar
  44. Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419CrossRefGoogle Scholar
  45. Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochim Pol 55:457–471PubMedGoogle Scholar
  46. Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47:807–817PubMedCrossRefGoogle Scholar
  47. Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yarnaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605PubMedCrossRefGoogle Scholar
  48. McGrath SP, Zhao FJ, Withers PJA (1996) Development of sulphur deficiency in crops and its treatment. In: Proceedings of the Fertilizer Society 379, St. PetersburgGoogle Scholar
  49. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939PubMedCrossRefGoogle Scholar
  50. Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353PubMedCrossRefGoogle Scholar
  51. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht B, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250PubMedCrossRefGoogle Scholar
  52. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  53. Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ et al (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318PubMedCrossRefGoogle Scholar
  54. Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51:1255–1264PubMedCrossRefGoogle Scholar
  55. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucl Acids Res 35(Database issue):D846–D851Google Scholar
  56. Paradi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E (2010) Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. MPMI 23:1175–1183PubMedCrossRefGoogle Scholar
  57. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Nat Acad Sci USA 99:13324–13329PubMedCrossRefGoogle Scholar
  58. Popper Z, Michel G, Herve C, Domozych D, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590PubMedCrossRefGoogle Scholar
  59. Rhodes LH, Gerdemann JW (1978) Hyphal translocation and uptake of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biol Biochem 10:355–360CrossRefGoogle Scholar
  60. Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidien J-C, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983PubMedCrossRefGoogle Scholar
  61. Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450PubMedCrossRefGoogle Scholar
  62. Sawers RJH, Yang S-Y, Gutjahr C, Paszkowsky U (2008) The molecular components of nutrient exchange in arbuscular mycorrhizal interactions. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Heidelberg, pp 37–59CrossRefGoogle Scholar
  63. Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111CrossRefGoogle Scholar
  64. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296PubMedCrossRefGoogle Scholar
  65. Shibagaki N, Grossman AR (2004) Probing the function of STAS domains of the Arabidopsis sulfate transporters. J Biol Chem 279:30791–30799PubMedCrossRefGoogle Scholar
  66. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:16.1–16.24Google Scholar
  67. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  68. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377PubMedCrossRefGoogle Scholar
  69. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedCrossRefGoogle Scholar
  70. Tabe LM, Droux M (2001) Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol 126:176–187PubMedCrossRefGoogle Scholar
  71. Tabe LM, Venables I, Grootemaat A, Lewis D (2003) Sulfur transport and assimilation in developing embryos of chickpea (Cicer arietinum). In: Davidien J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhuys Publishers, Leiden, pp 335–337Google Scholar
  72. Takahashi H (2010) Sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159PubMedCrossRefGoogle Scholar
  73. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107PubMedCrossRefGoogle Scholar
  74. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The role of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182PubMedCrossRefGoogle Scholar
  75. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184PubMedCrossRefGoogle Scholar
  76. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi: 10.1093/molbev/msr121
  77. Tietjen GL, Moore RH (1972) Some Grubbs-type statistics for the detection of outliers. Technometrics 14:583–597Google Scholar
  78. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Physiological and genetical aspects of mycorrhizae. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Recherche de méthodes d’estimation ayant une signification fonctionnelle. INRA, France, pp 217–221Google Scholar
  79. Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6:S145–S155PubMedCrossRefGoogle Scholar
  80. Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 59-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31:729–740PubMedCrossRefGoogle Scholar
  81. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microb 64:5004–5007Google Scholar
  82. Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216CrossRefGoogle Scholar
  83. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza- enhanced expression. J Exp Bot 58:2491–2501PubMedCrossRefGoogle Scholar
  84. Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517PubMedCrossRefGoogle Scholar
  85. Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388PubMedCrossRefGoogle Scholar
  86. Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524PubMedCrossRefGoogle Scholar
  87. Zuber H, Davidien JC, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seed. Plant Physiol 154:913–926PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Leonardo Casieri
    • 1
  • Karine Gallardo
    • 2
  • Daniel Wipf
    • 1
  1. 1.Pôle Interactions Plantes-Microorganismes, ERL 6300 CNRSUMR1347 INRA/Agrosup/Université de Bourgogne AgroécologieDijon CedexFrance
  2. 2.Pôle GEAPSIUMR1347 INRA/Agrosup/Université de Bourgogne AgroécologieDijon CedexFrance

Personalised recommendations