Planta

, Volume 236, Issue 1, pp 115–128 | Cite as

ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta

  • Jesper Harholt
  • Jacob Krüger Jensen
  • Yves Verhertbruggen
  • Casper Søgaard
  • Sophie Bernard
  • Majse Nafisi
  • Christian Peter Poulsen
  • Naomi Geshi
  • Yumiko Sakuragi
  • Azeddine Driouich
  • J. Paul Knox
  • Henrik Vibe Scheller
Original Article

Abstract

Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.

Keywords

Pectin Arabinan Glycosyltransferase Disulfide bridges 

References

  1. Atmodjo MA, Sakuragi Y, Zhu X, Burrell A, Mohanty SS, Atwood JA, Orlando R, Scheller HV, Mohnen D (2011) GAUT1:GAUT7 are the core of a pectin biosynthetic homogalacturonan:galacturonosyl-transferase complex. Proc Natl Acad Sci USA 108:20225–20230PubMedCrossRefGoogle Scholar
  2. Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Hofte H, Truong HN (2002) Quasimodo1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900PubMedCrossRefGoogle Scholar
  5. Caffall KH, Pattathil S, Phillips SE, Hahn MG, Mohnen D (2009) Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol Plant 2:1000–1014PubMedCrossRefGoogle Scholar
  6. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular-organization of the Arabidopsis-thaliana root. Development 119:71–84PubMedGoogle Scholar
  7. Earley, Keith, Jeremy R. Haag, Olga Pontes, Kristen Opper, Tom Juehne, Keming Song, and Craig S. Pikaard (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629Google Scholar
  8. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCrossRefGoogle Scholar
  9. Egelund J, Petersen BL, Motawia MS, Damager I, Faik A, Olsen CE, Ishii T, Clausen H, Ulvskov P, Geshi N (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593–2607PubMedCrossRefGoogle Scholar
  10. Egelund J, Damager I, Faber K, Olsen CE, Ulvskov P, Petersen BL (2008) Functional characterisation of a putative rhamnogalacturonan II specific xylosyltransferase. FEBS Lett 582:3217–3222PubMedCrossRefGoogle Scholar
  11. El-Battari A, Prorok M, Angata K, Mathieu S, Zerfaoui M, Ong E, Suzuki M, Lombardo D, Fukuda M (2003) Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation. Glycobiology 13:941–953PubMedCrossRefGoogle Scholar
  12. Fry SC (1988) The growing plant cell wall: Chemical and metabolic analysis. Longman Scientific and Technical, HarlowGoogle Scholar
  13. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile PPZP family of agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994PubMedCrossRefGoogle Scholar
  14. Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:49–58PubMedCrossRefGoogle Scholar
  15. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395PubMedCrossRefGoogle Scholar
  16. Hassinen A, Rivinoja A, Kauppila A, Kellokumpu S (2010) Golgi N-Glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 285:17771–17777PubMedCrossRefGoogle Scholar
  17. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3:a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:20747Google Scholar
  18. Jensen JK, Sorensen SO, Harholt J, Geshi N, Sakuragi Y, Moller I, Zandleven J, Bernal AJ, Jensen NB, Sorensen C, Pauly M, Beldman G, Willats WGT, Scheller HV (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302PubMedCrossRefGoogle Scholar
  19. Kay R, Chan A, Daly M, Mcpherson J (1987) Duplication of camv-35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302PubMedCrossRefGoogle Scholar
  20. Konishi T, Ono H, Ohnishi-Kameyama M, Kaneko S, Ishii T (2006) Identification of a mung bean arabinofuranosyltransferase that transfers arabinofuranosyl residues onto (1, 5)-linked alpha-l-arabino-oligosaccharides. Plant Physiol 141:1098–1105PubMedCrossRefGoogle Scholar
  21. Konishi T, Takeda T, Miyazaki Y, Ohnishi-Kameyama M, Hayashi T, O’Neill MA, Ishii T (2007) A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology 17:345–354PubMedCrossRefGoogle Scholar
  22. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28:149–U14Google Scholar
  23. Liepman AH, Wightman R, Geshi N, Turner SR, Scheller HV (2010) Arabidopsis: a powerful model system for plant cell wall research. Plant J 61:1107–1121PubMedCrossRefGoogle Scholar
  24. Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter WD (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670PubMedCrossRefGoogle Scholar
  25. McCartney L, Steele-King CG, Jordan E, Knox JP (2003) Cell wall pectic (1 - >4)-beta-D-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J 33:447–454PubMedCrossRefGoogle Scholar
  26. McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97:668–673PubMedCrossRefGoogle Scholar
  27. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277PubMedCrossRefGoogle Scholar
  28. Mutwil M, Obro J, Willats WGT, Persson S (2008) GeneCAT: novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36:W320–W326PubMedCrossRefGoogle Scholar
  29. Nguema-Ona E, Andème-Onzighi C, Aboughe-Angone S, Bardor M, Ishii T, Lerouge P, Driouich A (2006) The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides. Plant Physiol 140(4):1406–1417Google Scholar
  30. Nour-Eldin HH, Hansen BG, Norholm MHH, Jensen JK, Halkier BA (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34Google Scholar
  31. Obro J, Harholt J, Scheller HV, Orfila C (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 65:1429–1438PubMedCrossRefGoogle Scholar
  32. Orfila C, Sorensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JSG, Knox JP, Scheller HV (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222:613–622PubMedCrossRefGoogle Scholar
  33. Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound At Uxs2. Planta 221:538–548PubMedCrossRefGoogle Scholar
  34. Ralet MC, Crepeau MJ, Lefebvre J, Mouille G, Hofte H, Thibault JF (2008) Reduced number of homogalacturonan domains in pectins of an Arabidopsis mutant enhances the flexibility of the polymer. Biomacromolecules 9:1454–1460PubMedCrossRefGoogle Scholar
  35. Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, Mukhopadhyay A, Usadel B, Scheller HV (2011) The Interconversion of UDP-Arabinopyranose and UDP-Arabinofuranose is Indispensable for Plant Development in Arabidopsis thaliana. Plant Cell 23:1373–1390PubMedCrossRefGoogle Scholar
  36. Rual JF, Hirozane-Kishikawa T, Hao T, Bertin N, Li S, Dricot A, Li N, Rosenberg J, Lamesch P, Vidalain PO, Clingingsmith TR, Hartley JL, Esposito D, Cheo D, Moore T, Simmons B, Sequerra R, Bosak S, Doucette-Stamm L, Le Peuch C, Vandenhaute J, Cusick ME, Albala JS, Hill DE (2004) Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res 14:2128–2135PubMedCrossRefGoogle Scholar
  37. Sakuragi Y, Nørholm MHH, Scheller HV (2010) Visual mapping of cell wall biosynthesis. In: Popper ZA (ed) The plant cell wall: methods and protocols. Springer Science, BerlinGoogle Scholar
  38. Scheller HV, Jensen JK, Sorensen SO, Harholt J, Geshi N (2007) Biosynthesis of pectin. Physiol Plant 129:283–295CrossRefGoogle Scholar
  39. Sieben C, Mikosch M, Brandizzi F, Homann U (2008) Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. Plant J 56:997–1006PubMedCrossRefGoogle Scholar
  40. Søgaard C, Stenbæk A, Bernard S, Driouich A, Scheller HV, Sakuragi Y (2012) GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues. PLoS One (accepted)Google Scholar
  41. Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103:5236–5241PubMedCrossRefGoogle Scholar
  42. Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539PubMedGoogle Scholar
  43. Verhertbruggen Y, Knox JP (2007) Pectic polysaccharides and expanding cell walls. In: Verbelen JP, Vissenberg K (eds) Plant cell monographs 5, the expanding cell. Springer-Verlag, Berlin, pp 139–158Google Scholar
  44. Verhertbruggen Y, Knox JP (2009) Pectin, cell wall biology and elucidation of functions. In: Schols HA, Visser RGF, Voragen AGJ (eds) Pectin and pectinases. Wageningen Academic Publishers, Wageningen, pp 139–148Google Scholar
  45. Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, McCleary BV, Mckee L, Gilbert HJ, Knox JP (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59:413–425PubMedCrossRefGoogle Scholar
  46. Vincken JP, Schols HA, Oomen RJFJ, Mccann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789PubMedCrossRefGoogle Scholar
  47. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956PubMedCrossRefGoogle Scholar
  48. Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 - >5)-alpha-l-arabinan. Carbohydr Res 308:149–152PubMedCrossRefGoogle Scholar
  49. Zandleven J, Sorensen SO, Harholt J, Beldman G, Schols HA, Scheller HV, Voragen AJ (2007) Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry 68:1219–1226PubMedCrossRefGoogle Scholar
  50. Zeng W, Jiang N, Nadella R, Killen TL, Nadella V, Faik A (2010) A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol 154:78–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jesper Harholt
    • 1
  • Jacob Krüger Jensen
    • 1
    • 2
  • Yves Verhertbruggen
    • 3
    • 5
  • Casper Søgaard
    • 1
  • Sophie Bernard
    • 4
  • Majse Nafisi
    • 1
  • Christian Peter Poulsen
    • 1
  • Naomi Geshi
    • 1
  • Yumiko Sakuragi
    • 1
  • Azeddine Driouich
    • 4
  • J. Paul Knox
    • 3
  • Henrik Vibe Scheller
    • 1
    • 5
    • 6
  1. 1.Laboratory for Molecular Plant Biology, VKR Research Centre Pro-Active Plants, Department of Plant Biology and BiotechnologyUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Plant Biology, DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingUSA
  3. 3.Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  4. 4.Laboratoire ‘‘Glycobiologie et Matrice Extracellulaire Végétale”, UPRES EA 4358, Institut Fédératif de Recherche Multidisciplinaire sur les Peptides 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie (PRIMACEN), IBiSAUniversité de RouenMont-Saint Aignan CedexFrance
  5. 5.Lawrence Berkeley National Laboratory, Physical Biosciences DivisionJoint Bioenergy InstituteBerkeleyUSA
  6. 6.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations