, Volume 236, Issue 1, pp 51–61 | Cite as

The role of CCoAOMT1 and COMT1 in Arabidopsis anthers

  • Christin Fellenberg
  • Maike van Ohlen
  • Vinzenz Handrick
  • Thomas Vogt
Original Article


Arabidopsis caffeoyl coenzyme A dependent O-methyltransferase 1 (CCoAOMT1) and caffeic acid O-methyltransferase 1 (COMT1) display a similar substrate profile although with distinct substrate preferences and are considered the key methyltransferases (OMTs) in the biosynthesis of lignin monomers, coniferyl and sinapoylalcohol. Whereas CCoAOMT1 displays a strong preference for caffeoyl coenzyme A, COMT1 preferentially methylates 5-hydroxyferuloyl CoA derivatives and also performs methylation of flavonols with vicinal aromatic dihydroxy groups, such as quercetin. Based on different knockout lines, phenolic profiling, and immunohistochemistry, we present evidence that both enzymes fulfil distinct, yet different tasks in Arabidopsis anthers. CCoAOMT1 besides its role in vascular tissues can be localized to the tapetum of young stamens, contributing to the biosynthesis of spermidine phenylpropanoid conjugates. COMT1, although present in the same organ, is not localized in the tapetum, but in two directly adjacent cells layers, the endothecium and the epidermal layer of stamens. In vivo localization and phenolic profiling of comt1 plants provide evidence that COMT1 neither contributes to the accumulation of spermidine phenylpropanoid conjugates nor to the flavonol glycoside pattern of pollen grains.


Arabidopsis O-Methyltransferase Phenylpropanoids Pollen Spermidine Tapetum 



Flower bud-specific O-methyltransferase


Bromo-chloro-indolyl phosphate/nitroblue tetrazolium


Caffeoyl coenzyme A O-methyltransferase


Caffeic acid O-methyltransferase


Hydroxycinnamic acid amide




Quantitative real-time polymerase chain reaction


Spermidine hydroxycinnamic acid transferase



We thank Alain Tissier (IPB, Halle) for critical reading of the manuscript. Financial support by the Deutsche Forschungsgemeinschaft (Vo 719/8-1) is gratefully acknowledged.

Supplementary material

425_2011_1586_MOESM1_ESM.doc (20 kb)
Supplementary material 1 (DOC 20 kb)
425_2011_1586_MOESM2_ESM.doc (22 kb)
Supplementary material 2 (DOC 22 kb)
425_2011_1586_MOESM3_ESM.tif (220 kb)
Supplementary material 3 (TIFF 219 kb)
425_2011_1586_MOESM4_ESM.tif (44 kb)
Supplementary material 4 (TIFF 44 kb)
425_2011_1586_MOESM5_ESM.tif (82 kb)
Supplementary material 5 (TIFF 82 kb)


  1. Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  2. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–470PubMedCrossRefGoogle Scholar
  3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  4. Chen F, Reddy MS, Temple S, Jackson L, Shadle G, Dixon R (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicato sativa L.). Plant J 48:113–124PubMedCrossRefGoogle Scholar
  5. Chomzynski P, Sacchi N (1987) Single-step method of RNA isolation by guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159CrossRefGoogle Scholar
  6. Davin LB, Jourdes M, Patte AM, Kim KK, Vassao DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan. Nat Prod Rep 25:1015–1090PubMedCrossRefGoogle Scholar
  7. Day A, Neutelings G, Nolin G, Grec S, Habrant A, Cronier D, Maher M, Rolando C, David H, Chabbert B, Hawkins S (2009) Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem. Plant Physiol Biochem 47:9–19PubMedCrossRefGoogle Scholar
  8. Dixon RA, Reddy MSS (2003) Biosynthesis of monolignols. Genomic and reverse genetics approaches. Phytochem Rev 2:289–306CrossRefGoogle Scholar
  9. Do CT, Pollet B, Thévenin J, Silbout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids, and sinapoyl malate biosynthesis in A. thaliana. Planta 226:1117–1129PubMedCrossRefGoogle Scholar
  10. Fellenberg C, Milkowski C, Hause B, Lange PR, Böttcher C, Vogt T (2008) Tapetum specific location of a cation-dependent O-methyltransferase in A. thaliana. Plant J 56:132–145PubMedCrossRefGoogle Scholar
  11. Fellenberg C, Böttcher C, Vogt T (2009) Phenylpropanoid conjugate biosynthesis in flower buds of Arabidopsis thaliana. Phytochemistry 70:1392–1400PubMedCrossRefGoogle Scholar
  12. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechthold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989PubMedCrossRefGoogle Scholar
  13. Grienenberger E, Besseau S, Geoffrey P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259PubMedCrossRefGoogle Scholar
  14. Guo D, Chen F, Inoue K, Blount W, Dixon R (2001) Down-regulation of caffeic acid 3-O-methyltransferase and caffeoyl-CoA-3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications of the biosynthesis of G and S lignin. Plant Cell 13:76–88Google Scholar
  15. Handrick V, Vogt T, Frolov A (2010) Profiling of hydroxycinnamic acid amides in Arabidopsis pollen by tandem mass spectrometry. Anal Bioanal Chem 398:2789–2801PubMedCrossRefGoogle Scholar
  16. Hsieh K, Huang AH (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Physiol 19:582–596Google Scholar
  17. Hugueney P, Provenzano S, Verriès C, Ferrandino A, Meudec E, Batelli G, Merdinoglu G, Cheynier V, Schubert A, Ageorges G (2009) A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150:2057–2070PubMedCrossRefGoogle Scholar
  18. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229PubMedCrossRefGoogle Scholar
  19. Ibdah M, Zhang XH, Schmidt J, Vogt T (2003) A novel Mg++-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 278:43961–43972PubMedCrossRefGoogle Scholar
  20. Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of intraradices Medicago truncatula reduces jasmonate levels and the degree of mycorrhyzation with Glomus intra-radices. Plant Physiol 13:1401–1410CrossRefGoogle Scholar
  21. Johnson-Brosseau SA, McCormick S (2004) A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J 39:761–775CrossRefGoogle Scholar
  22. Jørgensen K, Rasmussen AV, Morant M, Nielson AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling on the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291PubMedCrossRefGoogle Scholar
  23. Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Skata K, Shimizu B (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxolutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999PubMedCrossRefGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  25. Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545PubMedCrossRefGoogle Scholar
  26. Liu CJ, Deavours BE, Richard SB, Ferrer JL, Blount JW, Huhman D, Dixon RA, Noel JP (2006) Structural basis for dual functionality of isoflavonoid O-methyltransferase in the evolution of plant defence responses. Plant Cell 18:3656–3669PubMedCrossRefGoogle Scholar
  27. Lücker J, Martens S, Lund S (2010) Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3′,5′-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols. Phytochemistry 71:1474–1484PubMedCrossRefGoogle Scholar
  28. Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577PubMedCrossRefGoogle Scholar
  29. Matsuno M, Caompagnon V, Schoch GA, Schmitt M, Debayle D, Bassard JE, Pollet B, Hehn A, Heintz D, Ullman P, Lapierre C, Bernier F, Ehlting J, Werk-Reichart D (2009) Evolution of a novel phenolic pathway for pollen development. Science 326:1688–1692CrossRefGoogle Scholar
  30. Maury S, Delaunay A, Mesnard F, Crǒnier D, Chabbert B, Geoffroy P, Legrand M (2010) O-Methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir-inducers and are less susceptible to Agrobacterium tumefaciens infection. Planta 232:975–986PubMedCrossRefGoogle Scholar
  31. Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo D, Prou C, Lerouge P, Jouanin L (2009) Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC Plant Biol 9:6PubMedCrossRefGoogle Scholar
  32. Mitsuda M, Seki N, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 from Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006PubMedCrossRefGoogle Scholar
  33. Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonoid 3′-O-methyltransferase and characterization of its gene product. Arch Biochem Biophys 375:385–388PubMedCrossRefGoogle Scholar
  34. Pakusch E, Kneusel RE, Matern U (1989) S-Adenosyl-l-methionine:trans caffeoyl coenzyme A 3-O-methyltransferase from elicitor treated parsley cell suspension cultures. Arch Biochem Biophys 271:488–494PubMedCrossRefGoogle Scholar
  35. Peng Z, Lu T, Li L, Gao Z, Hu T, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116PubMedCrossRefGoogle Scholar
  36. Raes J, Rohde A, Christensen JH, van der Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071PubMedCrossRefGoogle Scholar
  37. Sahr T, Thibaud A, Fizarnes C, Maurel C, Santoni V (2010) O-Carboxyl and N-methyltransferases active on plant aquaporins. Plant Cell Physiol 51:2092–2104PubMedCrossRefGoogle Scholar
  38. Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994PubMedCrossRefGoogle Scholar
  39. Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B (2010) Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-, and MYB111-independent flavonol glycoside accumulation. New Phytol 188:985–1000PubMedCrossRefGoogle Scholar
  40. Wirsing L, Naumann K, Vogt T (2011) Arabidopsis methyltransferase fingerprints by affinity-based protein profiling. Anal Biochem 408:220–225PubMedCrossRefGoogle Scholar
  41. Zhao Q, Wang H, Yin Y, Xu Y, Chen F, Dixon RA (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci USA 107:14496–14501PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christin Fellenberg
    • 1
  • Maike van Ohlen
    • 1
    • 2
  • Vinzenz Handrick
    • 1
  • Thomas Vogt
    • 1
  1. 1.Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  2. 2.Institute of Pharmaceutical BiologyBraunschweig University of TechnologyBrunswickGermany

Personalised recommendations