Advertisement

Planta

, Volume 235, Issue 6, pp 1369–1382 | Cite as

The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens

  • Hyong Woo Choi
  • Byung Kook HwangEmail author
Original Article

Abstract

In plants, biotic and abiotic stresses regulate the expression and activity of various peroxidase isoforms. Capsicum annuum EXTRACELLULAR PEROXIDASE 2 (CaPO 2) was previously shown to play a role in local and systemic reactive oxygen species bursts and disease resistance during bacterial pathogen infection. Here, we report CaPO 2 expression patterns and functions during conditions of biotic and abiotic stress. In pepper plants, CaPO 2 expression was strongly induced by abscisic acid, but not by defense-related plant hormones such as salicylic acid, ethylene and jasmonic acid. CaPO 2 was also strongly induced by abiotic and biotic stress treatments, including drought, cold, high salinity and infection by the hemibiotrophic fungal pathogen Colletotrichum coccodes. Loss-of-function of CaPO 2 in virus-induced gene silenced pepper plants led to increased susceptibility to salt- and osmotic-induced stress. In contrast, CaPO 2 overexpression in transgenic Arabidopsis thaliana plants conferred enhanced tolerance to high salt, drought, and oxidative stress, while also enhancing resistance to infection by the necrotrophic fungal pathogen Alternaria brassicicola. Taken together, these results provide evidence for the involvement of pepper extracellular peroxidase CaPO2 in plant defense responses to various abiotic stresses and plant fungal pathogens.

Keywords

Pepper Extracellular peroxidase Abscisic acid Drought stress Salt stress Fungal pathogen 

Abbreviations

CaPO2

Capsicum annum extracellular peroxidase 2

VIGS

Virus-induced gene silencing

TRV

Tobacco rattle virus

OX

Overexpression

ROS

Reactive oxygen species

ABA

Abscisic acid

MV

Methyl viologen

TBARS

Thiobarbituric acid reactive substance

Notes

Acknowledgments

This work was supported by the Next Generation BioGreen21 Program (Plant Molecular Breeding Center; Grant No. PJ008027), Rural Development Administration, Republic of Korea.

References

  1. Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283PubMedCrossRefGoogle Scholar
  2. An SH, Choi HW, Hwang IS, Hong JK, Hwang BK (2008a) A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. Plant Mol Biol 67:519–533PubMedCrossRefGoogle Scholar
  3. An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008b) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78PubMedCrossRefGoogle Scholar
  4. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedCrossRefGoogle Scholar
  5. Assigbetse K, Cuny G, Valette C, Delannoy E, Bresson E, Jalloul A, Daniel J-F, Geiger J-P, Nicole M (1999) Cloning and characterization of a bacterial-induced peroxidase-encoding cDNA from cotton. Plant Physiol 121:312Google Scholar
  6. Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501PubMedCrossRefGoogle Scholar
  7. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefGoogle Scholar
  8. Banu MN, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156PubMedCrossRefGoogle Scholar
  9. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863PubMedCrossRefGoogle Scholar
  10. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  11. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195PubMedCrossRefGoogle Scholar
  12. Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842CrossRefGoogle Scholar
  13. Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904PubMedCrossRefGoogle Scholar
  14. Choi HW, Lee BG, Kim NH, Park Y, Lim CW, Song HK, Hwang BK (2008) A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiol 148:383–401PubMedCrossRefGoogle Scholar
  15. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  16. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bögre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443PubMedCrossRefGoogle Scholar
  17. Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761PubMedCrossRefGoogle Scholar
  18. Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32PubMedCrossRefGoogle Scholar
  19. Flors V, Ton J, van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B (2008) Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92PubMedCrossRefGoogle Scholar
  20. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophy 125:189–198CrossRefGoogle Scholar
  21. Heggie L, Jansen MA, Burbridge EM, Kavanagh TA, Thorneley RN, Dix PJ (2005) Transgenic tobacco (Nicotiana tabacum L. cv. Samsun-NN) plants over-expressing a synthetic HRP-C gene are altered in growth, development and susceptibility to abiotic stress. Plant Physiol Biochem 43:1067–1073PubMedCrossRefGoogle Scholar
  22. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468PubMedCrossRefGoogle Scholar
  23. Hong JK, Choi DS, Kim SH, Yi SY, Kim YJ, Hwang BK (2008) Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. Planta 228:485–497PubMedCrossRefGoogle Scholar
  24. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357PubMedCrossRefGoogle Scholar
  25. Kawaoka A, Kawamoto T, Moriki H, Ohta H, Sekine M, Takano M, Shinmyo A (1994) Growth stimulation of tobacco plant introduced the horseradish peroxidase gene prxC1a. J Ferment Bioeng 78:49–53CrossRefGoogle Scholar
  26. Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185PubMedCrossRefGoogle Scholar
  27. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881PubMedCrossRefGoogle Scholar
  28. Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant specific resistance reaction of rice plants to the infection of Magnaporthe gricea. Physiol Mol Plant Pathol 65:3–9CrossRefGoogle Scholar
  29. Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370PubMedCrossRefGoogle Scholar
  30. Kurepa J, Smalle J, Van Montagu M, Inzé D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764PubMedCrossRefGoogle Scholar
  31. Lagrimini LM, Bradford S, Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18PubMedCrossRefGoogle Scholar
  32. Lagrimini LM, Joly RJ, Dunlap JR, Liu TY (1997) The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant Mol Biol 33:887–895PubMedCrossRefGoogle Scholar
  33. Lee SC, Hwang BK (2003) Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216:387–396PubMedGoogle Scholar
  34. Lee SC, Hwang BK (2009) Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis. Planta 229:383–391PubMedCrossRefGoogle Scholar
  35. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786PubMedCrossRefGoogle Scholar
  36. Liu G, Sheng X, Greenshields DL, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y (2005) Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microbe Interact 18:730–741PubMedCrossRefGoogle Scholar
  37. Marumo S, Katayama M, Komori E, Ozaki Y, Natsume M, Kondo S (1982) Microbial production of abscisic acid by Botrytis cinerea. Agr Biol Chem Tokyo 46:1967–1968CrossRefGoogle Scholar
  38. Matin MN, Pandeya D, Baek KH, Lee DS, Lee JH, Kang H, Kang SG (2010) Phenotypic and genotypic analysis of rice lesion mimic mutants. Plant Pathol J 26:159–169CrossRefGoogle Scholar
  39. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414PubMedCrossRefGoogle Scholar
  40. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953PubMedCrossRefGoogle Scholar
  41. Park SY, Ryu SH, Kwon SY, Lee HS, Kim JG, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Mol Gen Genomics 269:542–552CrossRefGoogle Scholar
  42. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidase modify the cell wall. Trends Plant Sci 9:534–540PubMedCrossRefGoogle Scholar
  43. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265PubMedCrossRefGoogle Scholar
  44. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedCrossRefGoogle Scholar
  45. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedCrossRefGoogle Scholar
  46. Sang MK, Kim KD (2011) Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology 101:732–740PubMedCrossRefGoogle Scholar
  47. Sang MK, Kim JG, Kim KD (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774–783PubMedCrossRefGoogle Scholar
  48. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002a) Monitoring the expression pattern of around 7, 000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291PubMedCrossRefGoogle Scholar
  49. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002b) Monitoring the expression profiles of 7,000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  50. Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotech 7:161–167PubMedCrossRefGoogle Scholar
  51. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  52. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194CrossRefGoogle Scholar
  53. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138PubMedCrossRefGoogle Scholar
  54. Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130PubMedCrossRefGoogle Scholar
  55. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317PubMedCrossRefGoogle Scholar
  56. Valério L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65:1331–1342PubMedCrossRefGoogle Scholar
  57. Wada N, Kinoshita S, Matsuo M, Amako K, Miyake C, Asada K (1998) Purification and molecular properties of ascorbate peroxidase from bovine eye. Biochem Biophys Res Commun 242:256–261PubMedCrossRefGoogle Scholar
  58. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393CrossRefGoogle Scholar
  59. Welinder KG, Justesen AF, Kjaersgård IV, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081PubMedCrossRefGoogle Scholar
  60. Ye B, Gressel J (2000) Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211:50–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular Plant Pathology, School of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Boyce Thompson Institute for Plant ResearchNew YorkUSA

Personalised recommendations