, Volume 235, Issue 5, pp 955–964 | Cite as

Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress

  • María A. Kolman
  • Leticia L. Torres
  • Mariana L. Martin
  • Graciela L. SalernoEmail author
Original Article


Higher plants and cyanobacteria metabolize sucrose (Suc) by a similar set of enzymes. Suc synthase (SuS, A/UDP-glucose: d-fructose 2-α-d-glucosyl transferase) catalyzes a reversible reaction. However, it is in the cleavage of Suc that this enzyme plays an important role in vivo, providing sugar nucleotides for polysaccharide biosynthesis. In cyanobacteria, SuS occurrence has been reported in heterocyst-forming strains, where it was shown to be involved also in nitrogen fixation. We investigated the presence of sequences homologous to SuS-encoding genes (sus) in recently sequenced cyanobacterial genomes. In this work, we show for the first time the presence of SuS in unicellular cyanobacterium strains (Microcystis aeruginosa PCC 7806, Gloebacter violaceus PCC 7421, and Thermosynechococcus elongatus BP-1). After functional characterization of SuS encoding genes, we demonstrated an increase in their transcript levels after a salt treatment or hypoxic stress in M. aeruginosa and G. violaceus cells. Based on phylogenetic analysis and on the presence of sus homologs in the most recently radiated cyanobacterium strains, we propose that sus genes in unicellular cyanobacteria may have been acquired through horizontal gene transfer. Taken together, our data indicate that SuS acquisition by cyanobacteria might be related to open up new ecological niches.


Gloeobacter violaceus Hypoxia Microcystis aeruginosa Salt stress Sucrose metabolism Thermosynechococcus elongatus 



Gloebacter violaceus


Microcystis aeruginosa




Sucrose synthase

sus, susA

Sucrose synthase encoding gene


Thermosynechoccocus elongatus



We are very thankful to H.G. Pontis for insightful reading of the manuscript and for helpful discussions, and C. Fernández and M. Vidal for technical assistance. This research was funded by Grants from CONICET (PIP 134), Universidad Nacional de Mar del Plata, and FIBA.

Supplementary material

425_2011_1542_MOESM1_ESM.pdf (6 kb)
Supplementary material 1 (PDF 6 kb)
425_2011_1542_MOESM2_ESM.pdf (6 kb)
Supplementary material 2 (PDF 6 kb)
425_2011_1542_MOESM3_ESM.pdf (129 kb)
Supplementary material 3 (PDF 129 kb)
425_2011_1542_MOESM4_ESM.pdf (98 kb)
Supplementary material 4 (PDF 100 kb)


  1. Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260PubMedGoogle Scholar
  2. Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [13C]glucose and [14C]glucose. Plant Physiol 138:2220–2232PubMedCrossRefGoogle Scholar
  3. Avigad G, Dey PM (1997) Carbohydrate metabolism: storage carbohydrate. In Plant Biochemistry (Dey PM, Harborne JB eds) pp 143–204, Academic Press, LondonGoogle Scholar
  4. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409PubMedCrossRefGoogle Scholar
  5. Biemelt S, Hajirezaei MR, Melzer M, Albrecht G, Sonnewald U (1999) Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta 210:41–49PubMedCrossRefGoogle Scholar
  6. Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828PubMedCrossRefGoogle Scholar
  7. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123PubMedCrossRefGoogle Scholar
  8. Cumino A, Ekeroth C, Salerno GL (2001) Sucrose-phosphate phosphatase from Anabaena sp. strain PCC 7120: isolation of the protein and gene revealed significant structural differences from the higher-plant enzyme. Planta 214:250–256PubMedCrossRefGoogle Scholar
  9. Cumino A, Curatti L, Giarrocco L, Salerno GL (2002) Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Lett 517:19–23PubMedCrossRefGoogle Scholar
  10. Cumino AC, Marcozzi C, Barreiro R, Salerno GL (2007) Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation. Plant Physiol 143:1385–1397PubMedCrossRefGoogle Scholar
  11. Curatti L, Porchia AC, Herrera-Estrella L, Salerno GL (2000) A prokaryotic sucrose synthase gene (susA) isolated from a filamentous nitrogen-fixing cyanobacterium encodes a protein similar to those of plants. Planta 211:729–735PubMedCrossRefGoogle Scholar
  12. Curatti L, Flores E, Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513:175–178PubMedCrossRefGoogle Scholar
  13. Curatti L, Giarrocco L, Salerno GL (2006) Sucrose synthase and RuBisCo expression is similarly regulated by the nitrogen source in the nitrogen-fixing cyanobacterium Anabaena sp. Planta 223:891–900PubMedCrossRefGoogle Scholar
  14. Curatti L, Giarrocco LE, Cumino AC, Salerno GL (2008) Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria. Planta 228:617–625PubMedCrossRefGoogle Scholar
  15. Desplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43:133–138PubMedCrossRefGoogle Scholar
  16. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Ac Res 36:D281–D288CrossRefGoogle Scholar
  17. Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301PubMedCrossRefGoogle Scholar
  18. Guglielminetti L, Wu Y, Boschi E, Yamaguchi J, Favati A, Vergara M, Perata P, Alpi A (1997) Effects of anoxia on sucrose degrading enzymes in cereal seeds. J Plant Phys 150:251–258CrossRefGoogle Scholar
  19. Hagemann M (2010) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123CrossRefGoogle Scholar
  20. Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51PubMedCrossRefGoogle Scholar
  21. Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72PubMedCrossRefGoogle Scholar
  22. Hunter S, Apweiler R, Attwood TK et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215PubMedCrossRefGoogle Scholar
  23. Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol Oceanogr 43:408–419CrossRefGoogle Scholar
  24. Jayashree B, Pradeep R, Anil K, Gopal B (2008) Correlation between the sucrose synthase protein subfamilies, variations in structure and expression in stress-derived expressed sequence tag datasets. J Proteomics Bioinform 1:408–423CrossRefGoogle Scholar
  25. Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Env Microbiol 13:551–562CrossRefGoogle Scholar
  26. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494PubMedCrossRefGoogle Scholar
  27. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246PubMedCrossRefGoogle Scholar
  28. Koonin EV, Makarova KS, Aravind L (2001) Horizontal Gene Transfer in Prokaryotes: Quantification and Classification 1. Annu Rev Microbiol 55:709–742PubMedCrossRefGoogle Scholar
  29. Kos PB, Deak Z, Cheregi O, Vass I (2008) Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1. Biochim Biophys Acta 1777:74–83PubMedCrossRefGoogle Scholar
  30. Larsson J, Nylander J, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evolutionary Biology 11:187PubMedCrossRefGoogle Scholar
  31. Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138PubMedCrossRefGoogle Scholar
  32. Nakamura Y, Kaneko T, Sato S et al (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:135–148PubMedCrossRefGoogle Scholar
  33. Nakamura Y, Kaneko T, Sato S et al (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145PubMedCrossRefGoogle Scholar
  34. Onai K, Morishita M, Itoh S, Okamoto K, Ishiura M (2004) Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range. J Bacteriol 186:4972–4977PubMedCrossRefGoogle Scholar
  35. Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53:914–921CrossRefGoogle Scholar
  36. Pontis HG, Babio JR, Salerno G (1981) Reversible unidirectional inhibition of sucrose synthase activity by disulfides. Proc Natl Acad Sci USA 78:6667–6669PubMedCrossRefGoogle Scholar
  37. Porchia AC, Salerno GL (1996) Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes. Proc Natl Acad Sci USA 93:13600–13604PubMedCrossRefGoogle Scholar
  38. Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40PubMedCrossRefGoogle Scholar
  39. Porta D, Rippka R, Hernández-Mariné M (2000) Unusual ultrastructural features in three strains of Cyanothece (cyanobacteria). Arch Microbiol 173:154–163PubMedCrossRefGoogle Scholar
  40. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  41. Roby C, Cortes S, Gromova M, Le Bail JL, Roberts JK (2002) Sucrose cycling in heterotrophic plant cell metabolism: first step towards an experimental model. Mol Biol Rep 29:145–149PubMedCrossRefGoogle Scholar
  42. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445PubMedCrossRefGoogle Scholar
  43. Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69PubMedCrossRefGoogle Scholar
  44. Salerno GL, Porchia AC, Vargas WA, Abdian PL (2004) Fructose-containing oligosaccharides: novel compatible solutes in Anabaena cells exposed to salt stress. Plant Sci 167:1003–1008CrossRefGoogle Scholar
  45. Sambrook J, Russell DW (2001) Molecular Cloning. A Laboratory Manual, 3rd. edition edn. Cold Spring Harbor Lab. Press, New YorkGoogle Scholar
  46. Schneider S, Jürgens UJ (1991) Cell wall and sheath constituents of the cyanobacterium Gloeobacter violaceus. Arch Microbiol 156:312–318CrossRefGoogle Scholar
  47. Sevilla E, Martin-Luna B, Vela L, Bes MT, Peleato ML, Fillat MF (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC 7806. Ecotoxicology 19:1167–1173PubMedCrossRefGoogle Scholar
  48. Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Op Plant Biol 13:273–278CrossRefGoogle Scholar
  49. Subbaiah CC, Huber SC, Sachs MM, Rhoads D (2007) Sucrose synthase: expanding protein function. Plant Signal Behav 2:28–29PubMedCrossRefGoogle Scholar
  50. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010PubMedCrossRefGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol doi: 10.1093/molbev/msr121. MBE Advance Access published August 18, 2011
  52. Torres LL, Salerno GL (2007) A metabolic pathway leading to mannosylfructose biosynthesis in Agrobacterium tumefaciens uncovers a family of mannosyltransferases. Proc Natl Acad Sci USA 104:14318–14323PubMedCrossRefGoogle Scholar
  53. Vioque A (1992) Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. Nucleic Acids Res 20:6331–6337PubMedCrossRefGoogle Scholar
  54. Visser PM, Ibelings BW, Mur LR, Walsby AE (2005) The ecophysiology of the harmful cyanobacterium Microcystis. In: Huisman J, Matthijs H, Visser P (eds) Harmful Cyanobacteria. Springer, Netherlands, pp 109–142CrossRefGoogle Scholar
  55. Wind J, Smeekens S, Hanson J (2010) Sucrose: Metabolite and signaling molecule. Phytochem 71:610–1614CrossRefGoogle Scholar
  56. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol 35:253–289CrossRefGoogle Scholar
  57. Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol 116:1573–1583PubMedCrossRefGoogle Scholar
  58. Zhu J, Jager K, Black T, Zarka K, Koksharova O, Wolk CP (2001) HcwA, an autolysin, is required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 183:6841–6851PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • María A. Kolman
    • 1
  • Leticia L. Torres
    • 1
    • 2
  • Mariana L. Martin
    • 1
  • Graciela L. Salerno
    • 1
    Email author
  1. 1.Centro de Investigaciones Biológicas, CEBB-MdP-INBA, Fundación para Investigaciones Biológicas Aplicadas (FIBA)Mar del PlataArgentina
  2. 2.Departamento de Biología Molecular, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations