, Volume 235, Issue 3, pp 565–578 | Cite as

Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library

  • A. E. Ochoa-Alfaro
  • M. Rodríguez-Kessler
  • M. B. Pérez-Morales
  • P. Delgado-Sánchez
  • C. L. Cuevas-Velazquez
  • G. Gómez-Anduro
  • J. F. Jiménez-BremontEmail author
Original Article


Cactus pears are succulent plants of the Cactaceae family adapted to extremely arid, hot and cold environments, making them excellent models for the study of molecular mechanisms underlying abiotic stress tolerance. Herein, we report a directional cDNA library from 12-month-old cladodes of Opuntia streptacantha plants subjected to abiotic stresses. A total of 442 clones were sequenced, representing 329 cactus pear unigenes, classified into eleven functional categories. The most abundant EST (unigen 33) was characterized under abiotic stress. This cDNA of 905 bp encodes a SK3-type acidic dehydrin of 248 amino acids. The OpsDHN1 gene contains an intron inserted within the sequence encoding the S-motif. qRT-PCR analysis shows that the OpsDHN1 transcript is specifically accumulated in response to cold stress, and induced by abscisic acid. Over-expression of the OpsDHN1 gene in Arabidopsis thaliana leads to enhanced tolerance to freezing treatment, suggesting that OpsDHN1 participates in freezing stress responsiveness. Generation of the first EST collection for the characterization of cactus pear genes constitutes a useful platform for the understanding of molecular mechanisms of stress tolerance in Opuntia and other CAM plants.


Abiotic stress Cactus pear cDNA library Cold stress Dehydrin 



Abscisic acid


Crassulacean acid metabolism


Open reading frame


Opuntia streptacantha dehydrin 1


Quantitative reverse transcriptase-polymerase chain reaction



This work was supported by SAGARPA (2004-C01-216) and the CONACYT (Investigación Ciencia Básica 2008-103106) fundings. We are grateful to Dr. Paul Riley for a grammatical review.

Supplementary material

425_2011_1531_MOESM1_ESM.doc (616 kb)
Supplementary material 1 (DOC 615 kb)
425_2011_1531_MOESM2_ESM.doc (52 kb)
Supplementary material 2 (DOC 51 kb)
425_2011_1531_MOESM3_ESM.doc (64 kb)
Supplementary material 3 (DOC 64 kb)
425_2011_1531_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 kb)
425_2011_1531_MOESM5_ESM.doc (370 kb)
Supplementary material 5 (DOC 370 kb)
425_2011_1531_MOESM6_ESM.doc (216 kb)
Supplementary material 6 (DOC 215 kb)


  1. Allagulova ChR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68:945–951Google Scholar
  2. Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889PubMedGoogle Scholar
  3. Bae EK, Lee H, Lee JS, Noh EW (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42:439–443PubMedGoogle Scholar
  4. Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE Jr (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118PubMedGoogle Scholar
  5. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24PubMedGoogle Scholar
  6. Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124PubMedGoogle Scholar
  7. Black C, Osmond C (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth Res 76:329–341PubMedGoogle Scholar
  8. Bokor M, Csizmok V, Kovacs D, Banki P, Friedrich P, Tompa P, Tompa K (2005) NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J 88:2030–2037PubMedGoogle Scholar
  9. Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5PubMedGoogle Scholar
  10. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026PubMedGoogle Scholar
  11. Busk PK, Jensen AB, Pages M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295PubMedGoogle Scholar
  12. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74Google Scholar
  13. Chung E, Kim SY, Yi SY, Choi D (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol Cells 15:327–332PubMedGoogle Scholar
  14. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803Google Scholar
  15. Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296Google Scholar
  16. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedGoogle Scholar
  17. Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448PubMedGoogle Scholar
  18. Dure L 3rd (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369PubMedGoogle Scholar
  19. Fan Z, Wang X (2006) Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. Mol Biol (Mosk) 40:52–60Google Scholar
  20. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  21. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674PubMedGoogle Scholar
  22. Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am J Bot 91:1915–1921PubMedGoogle Scholar
  23. Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339Google Scholar
  24. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298PubMedGoogle Scholar
  25. Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703PubMedGoogle Scholar
  26. Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541PubMedGoogle Scholar
  27. Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687PubMedGoogle Scholar
  28. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347, BerkeleyGoogle Scholar
  29. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118PubMedGoogle Scholar
  30. Ingram J, Bartels D (1996) The Molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403PubMedGoogle Scholar
  31. Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles Gain of structure and lipid specificity. Plant Physiol 131:309–316PubMedGoogle Scholar
  32. Kosová K, Prášil I, Vítámvás P (2010) Role of dehydrins in plant stress response. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Books in soils, plants, and the environment. CRC Press, New York, pp 239–285Google Scholar
  33. Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390PubMedGoogle Scholar
  34. Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1 in rice (Oryza sativa L.). Mol Cells 19:212–218PubMedGoogle Scholar
  35. Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652PubMedGoogle Scholar
  36. Mouillon JM, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins: comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650PubMedGoogle Scholar
  37. Mueller JK, Heckathorn SA, Fernando D (2003) Identification of a chloroplast dehydrin in leaves of mature plants. Int J Plant Sci 164:S35–S42Google Scholar
  38. Nobel PS (1997) Recent ecophysiological findings for Opuntia ficus-indica. JPACD 2:89–96Google Scholar
  39. Nobel PS, Bobich EG (2002) Enviromental Biology. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, California, pp 57–74Google Scholar
  40. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279PubMedGoogle Scholar
  41. Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedGoogle Scholar
  42. Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597PubMedGoogle Scholar
  43. Pimienta-Barrios E (1994) Prickly pear (Opuntia spp.): a valuable fruit crop for the semi-arid lands of Mexico. J Arid Environ 28:1–11Google Scholar
  44. Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753PubMedGoogle Scholar
  45. Rabas AR, Martin CE (2003) Movement of water from old to young leaves in three species of succulents. Ann Bot 92:529–536PubMedGoogle Scholar
  46. Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson D, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 12:1781–1790Google Scholar
  47. Rodriguez-Kessler M, Ruiz OA, Maiale S, Ruiz-Herrera J, Jimenez-Bremont JF (2008) Polyamine metabolism in maize tumors induced by Ustilago maydis. Plant Physiol Biochem 46:805–814PubMedGoogle Scholar
  48. Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556PubMedGoogle Scholar
  49. Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221PubMedGoogle Scholar
  50. Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249PubMedGoogle Scholar
  51. Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69PubMedGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  53. Shakirova F, Allagulova C, Bezrukova M, Aval’baev A, Gimalov F (2009) The role of endogenous ABA in cold-induced expression of the TADHN dehydrin gene in wheat seedlings. Russ J Plant Physiol 56:720–723Google Scholar
  54. Shen Y, Tang M-J, Hu Y-L, Lin Z-P (2004) Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia. Plant Sci 166:1167–1175Google Scholar
  55. Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Aguero JA, Aguado-Santacruz GA, Jimenez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92PubMedGoogle Scholar
  56. Sun X, Lin HH (2010) Role of plant dehydrins in antioxidation mechanisms. Biologia 5:755–759Google Scholar
  57. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedGoogle Scholar
  58. Tompa P, Kovacs D (2010) Intrinsically disordered chaperones in plants and animals. Biochem Cell Biol 88:167–174PubMedGoogle Scholar
  59. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812PubMedGoogle Scholar
  60. Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort 560:285–292Google Scholar
  61. Weiss J, Egea-Cortines M (2009) Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. J Appl Genet 50:311–319PubMedGoogle Scholar
  62. Xu J, Zhang Y, Guan Z, Wei W, Han L, Chai T (2008a) Expression and function of two dehydrins under environmental stresses in Brassica juncea L. Mol Breed 21:431–438Google Scholar
  63. Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008b) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98PubMedGoogle Scholar
  64. Yin Z, Rorat T, Szabala BM, Ziólkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172Google Scholar
  65. Zhang Y, Mian MAR, Chekhovskiy K, So S, Kupfer D, Lai H, Roe BA (2005) Differential gene expression in Festuca under heat stress conditions. J Exp Bot 56:897–907PubMedGoogle Scholar
  66. Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, Chai T (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–218PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. E. Ochoa-Alfaro
    • 1
  • M. Rodríguez-Kessler
    • 2
  • M. B. Pérez-Morales
    • 1
  • P. Delgado-Sánchez
    • 1
  • C. L. Cuevas-Velazquez
    • 1
  • G. Gómez-Anduro
    • 3
  • J. F. Jiménez-Bremont
    • 1
    Email author
  1. 1.Division de Biologia MolecularInstituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa de San Jose 2055San Luis PotosiMexico
  2. 2.Facultad de CienciasUniversidad Autonoma de San Luis PotosiSan Luis PotosiMexico
  3. 3.Agricultura en Zonas Aridas, Centro de Investigaciones Biologicas del Noreste Mar Bermejo No. 195, Col. Playa Palo de Santa RitaLa PazMexico

Personalised recommendations