Advertisement

Planta

, Volume 235, Issue 2, pp 359–373 | Cite as

Influence of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.)

  • Hans Hoenicka
  • Silke Lautner
  • Andreas Klingberg
  • Gerald Koch
  • Fadia El-Sherif
  • Denise Lehnhardt
  • Bo Zhang
  • Ingo Burgert
  • Jürgen Odermatt
  • Siegbert Melzer
  • Jörg Fromm
  • Matthias Fladung
Original Article

Abstract

Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.

Keywords

Flowering time FPF1 Poplar Pyrolysis GC/MS Transgenic tree Wood chemistry Wood formation 

Abbreviations

DIG

Digoxigenine

Ef1a

Elongation Factor 1 Alpha

FT

Flowering Locus T

FTi

Flowering time

FDR

Fisher’s discriminant ratio

FPF1

Flowering Promoting Factor 1

LFY

Leafy

PCA

Principle component analysis

PtCO2

CONSTANS paralogous gene

PtFT1

Flowering Locus T paralogous gene

PtFUL

FRUITFULL homologous gene

PTLF

Leafy homologous gene

PTM5

Poplar MADS-box gene

Notes

Acknowledgments

This work was supported by a grant to MF by the German Ministry of Education and Research. We thank Olaf Polak, Susann Weichold and Gabriele Wienskol for helpful technical assistance in the lab, and greenhouse staff (Matthias Hunger, Gundel Wiemann, Monika Spauszus) for plant cultivation.

References

  1. Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348Google Scholar
  2. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992PubMedCrossRefGoogle Scholar
  3. Battey NH, Tooke F (2002) Molecular control and variation in the floral transition. Curr Opin Plant Biol 5(1):62–68Google Scholar
  4. Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664PubMedCrossRefGoogle Scholar
  5. Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund L, Burgert I, Sundberg B, Salmén L (2010) Ultra-structure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359–2365PubMedCrossRefGoogle Scholar
  6. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  7. Bremer J (1991) Quantifizierung der Gerüstsubstanzen von Lignocellulosen durch analytische Pyrolyse–Gaschromatographie/Massenspektrometrie. Dissertation, University of Hamburg, GermanyGoogle Scholar
  8. Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67PubMedCrossRefGoogle Scholar
  9. Cseke LJ, Ravinder N, Pandey AK, Podila GK (2007) Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene 391:209–222PubMedCrossRefGoogle Scholar
  10. Demura T, Fukuda H (2006) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70CrossRefGoogle Scholar
  11. Dünisch O, Funada R, Nakaba S, Fladung M (2006) Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar (Populus tremula L × P tremuloides Michx). Holzforschung 60:608–617CrossRefGoogle Scholar
  12. Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112(1):95–103Google Scholar
  13. Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in the inflorescence initiation in silver Birch (Betula pendula, Roth). Physiol Plant 131:149–158PubMedCrossRefGoogle Scholar
  14. Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309PubMedCrossRefGoogle Scholar
  15. Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  16. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus × domestica Borkh.). Plant Breed 126:37–145Google Scholar
  17. Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226CrossRefGoogle Scholar
  18. Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263PubMedCrossRefGoogle Scholar
  19. Fladung M, Ahuja MR (1995) ‘Sandwich’ method for non-radioactive hybridizations. Biotechniques 18:3–5Google Scholar
  20. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354Google Scholar
  21. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121CrossRefGoogle Scholar
  22. Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B (2010) ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol 153:1062–1073PubMedCrossRefGoogle Scholar
  23. Haimer E, Wendland M, Potthast A, Henniges U, Rosenau T, Liebner F (2010) Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. J Supercrit Fluids 53:121–130CrossRefGoogle Scholar
  24. Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genetica 55:241–292Google Scholar
  25. Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011PubMedCrossRefGoogle Scholar
  26. Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646PubMedCrossRefGoogle Scholar
  27. Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis 78:328–336CrossRefGoogle Scholar
  28. Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH, Amasino RM, Noh B, Noh YS (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 25:e8033CrossRefGoogle Scholar
  29. Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331–345PubMedCrossRefGoogle Scholar
  30. Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9:1327–1338PubMedCrossRefGoogle Scholar
  31. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedCrossRefGoogle Scholar
  32. Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrolysis 35:15–41CrossRefGoogle Scholar
  33. Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U et al (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Sweden, pp 119–130Google Scholar
  34. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567CrossRefGoogle Scholar
  35. Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32:997–1009PubMedCrossRefGoogle Scholar
  36. Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743–752PubMedCrossRefGoogle Scholar
  37. Martín-Trillo M, Martínez-Zapater JM (2002) Growing up fast: manipulating the generation time of trees. Curr Opin Biotechnol. 13(2):151–155Google Scholar
  38. Meilan R (2007) Floral induction in woody angiosperms. New Forest 14:179–202CrossRefGoogle Scholar
  39. Melzer S, Kampmann G, Chandler J, Apel K (1999) FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18:395–405PubMedCrossRefGoogle Scholar
  40. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492PubMedCrossRefGoogle Scholar
  41. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17PubMedCrossRefGoogle Scholar
  42. Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8:195–199PubMedCrossRefGoogle Scholar
  43. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Kobayashi Y, Araki T, Omura M (2010) Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf). Tree Physiol 30:431–439PubMedCrossRefGoogle Scholar
  44. Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silverio FO (2010) Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056–4061PubMedCrossRefGoogle Scholar
  45. Peña L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19(3):263–267Google Scholar
  46. Rodrigues J, Meier D, Faix O, Pereira H (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrolysis 48:121–128CrossRefGoogle Scholar
  47. Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223Google Scholar
  48. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:24–235CrossRefGoogle Scholar
  49. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  50. Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162(6):717–717Google Scholar
  51. Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17:269–310Google Scholar
  52. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr Polym 82:39–45CrossRefGoogle Scholar
  53. Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463PubMedCrossRefGoogle Scholar
  54. Smykal P, Gleissner R, Corbesier L, Apel K, Melzer S (2004) Modulation of flowering responses in different Nicotiana varieties. Plant Mol Biol 55:253–262PubMedCrossRefGoogle Scholar
  55. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  56. Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scient Publ, Oxford, pp 169–188Google Scholar
  57. Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245PubMedCrossRefGoogle Scholar
  58. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890PubMedCrossRefGoogle Scholar
  59. Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324PubMedCrossRefGoogle Scholar
  60. Wang H, Ge L, Ye HC, Chong K, Liu BY, Li GF (2004) Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med 70:347–352PubMedCrossRefGoogle Scholar
  61. Weigel D, Nilsson (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500Google Scholar
  62. Weiss SM, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers Inc, San FranciscoGoogle Scholar
  63. Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37PubMedCrossRefGoogle Scholar
  64. Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24:79–85PubMedCrossRefGoogle Scholar
  65. Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408:337–339PubMedCrossRefGoogle Scholar
  66. Zhang J, Elo A, Helariutta Y (2010) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:1–7Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hans Hoenicka
    • 1
  • Silke Lautner
    • 2
  • Andreas Klingberg
    • 2
  • Gerald Koch
    • 2
  • Fadia El-Sherif
    • 3
  • Denise Lehnhardt
    • 1
  • Bo Zhang
    • 6
  • Ingo Burgert
    • 6
  • Jürgen Odermatt
    • 2
  • Siegbert Melzer
    • 4
    • 5
  • Jörg Fromm
    • 2
  • Matthias Fladung
    • 1
  1. 1.Johann Heinrich von Thünen Institute (vTI)Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.Zentrum Holzwirtschaft der Universität HamburgJohann Heinrich von Thünen Institute (vTI)HamburgGermany
  3. 3.Department of HorticultureFaculty of Agriculture, Suez-Canal UniversityIsmailiaEgypt
  4. 4.Laboratory of Plant SystematicsInstitute of Botany and MicrobiologyLeuvenBelgium
  5. 5.Plant Breeding InstituteChristian-Albrechts-University KielKielGermany
  6. 6.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations