Advertisement

Planta

, Volume 235, Issue 1, pp 39–52 | Cite as

Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax

  • Bigang Mao
  • Zhijun Cheng
  • Cailin Lei
  • Fenghua Xu
  • Suwei Gao
  • Yulong Ren
  • Jiulin Wang
  • Xin Zhang
  • Jie Wang
  • Fuqing Wu
  • Xiuping Guo
  • Xiaolu Liu
  • Chuanyin Wu
  • Haiyang Wang
  • Jianmin WanEmail author
Original Article

Abstract

Epicuticular wax in plants limits non-stomatal water loss, inhibits postgenital organ fusion, protects plants against damage from UV radiation and imposes a physical barrier against pathogen infection. Here, we give a detailed description of the genetic, physiological and morphological consequences of a mutation in the rice gene WSL2, based on a comparison between the wild-type and an EMS mutant. The mutant’s leaf cuticle membrane is thicker and less organized than that of the wild type, and its total wax content is diminished by ~80%. The mutant is also more sensitive to drought stress. WSL2 was isolated by positional cloning, and was shown to encode a homologue of the Arabidopsis thaliana genes CER3/WAX2/YRE/FLP1 and the maize gene GL1. It is expressed throughout the plant, except in the root. A transient assay carried out in both A. thaliana and rice protoplasts showed that the gene product is deposited in the endoplasmic reticulum. An analysis of the overall composition of the wax revealed that the mutant produces a substantially reduced quantity of C22–C32 fatty acids, which suggests that the function of WSL2 is associated with the elongation of very long-chain fatty acids.

Keywords

Cuticular wax Rice (Oryza sativa L.) Verylong-chain fatty acid (VLCFA) Wax crystal-sparse leaf2 

Abbreviations

CER

ECERIFERUM

EMS

Ethyl methane sulfonate

FAE

Fatty acid elongase

GC–MS

Gas chromatography–mass spectrometry

SEM

Scanning electron microscope

TEM

Transmission electron microscope

VLCFA

Verylong-chain fatty acid

WSL2

Wax crystal-sparse leaf2

Notes

Acknowledgments

We thank for Drs. Xianchun Xia (Institute of Crop Science, CAAS) and Zhigang Zhao (Nanjing Agricultural University) for their critical reading of the manuscript. This research was supported by Grants from the Chinese ‘973’ Program (2007CB10880-1), National Transform Science and Technology Program (2009ZX08009-104B) and National Natural Science Foundation (30871498).

Supplementary material

425_2011_1481_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2216 kb)
425_2011_1481_MOESM2_ESM.doc (818 kb)
Supplementary material 2 (DOC 818 kb)
425_2011_1481_MOESM3_ESM.doc (58 kb)
Supplementary material 3 (DOC 57 kb)
425_2011_1481_MOESM4_ESM.doc (38 kb)
Supplementary material 4 (DOC 38 kb)
425_2011_1481_MOESM5_ESM.doc (38 kb)
Supplementary material 5 (DOC 38 kb)

References

  1. Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623PubMedCrossRefGoogle Scholar
  2. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116PubMedCrossRefGoogle Scholar
  3. Arthington BA, Bennett LG, Skatrud PL, Guynn CJ, Barbuch RJ, Uibright CE, Bard M (1991) Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 102:39–44PubMedCrossRefGoogle Scholar
  4. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105:14727–14731PubMedCrossRefGoogle Scholar
  5. Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot 47:99–109CrossRefGoogle Scholar
  6. Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191PubMedCrossRefGoogle Scholar
  7. Bianchi G, Lupotto E, Russo S (1979) Composition of epicuticular wax of rice, Oryza sativa. Cell Mol Life Sci 35:1417–1540CrossRefGoogle Scholar
  8. Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033PubMedCrossRefGoogle Scholar
  9. Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185PubMedCrossRefGoogle Scholar
  10. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330PubMedCrossRefGoogle Scholar
  11. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008PubMedCrossRefGoogle Scholar
  12. Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667PubMedCrossRefGoogle Scholar
  13. Haas K, Brune T, RüCker E (2001) Epicuticular wax crystalloids in rice and sugar cane leaves are reinforced by polymeric aldehydes. J Appl Bot 75:178–187Google Scholar
  14. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  15. Hooker TS, Lam P, Zheng H, Kunst L (2007) A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19:904–913PubMedCrossRefGoogle Scholar
  16. Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456PubMedCrossRefGoogle Scholar
  17. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  18. Jenks MA, Rich PJ, Peters PJ, Axtell JD, Ashworth EN (1992) Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. Int J Plant Sci 153:311–319CrossRefGoogle Scholar
  19. Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245PubMedGoogle Scholar
  20. Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566PubMedCrossRefGoogle Scholar
  21. Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032PubMedCrossRefGoogle Scholar
  22. Kamigaki A, Kondo M, Mano S, Hayashi M, Nishimura M (2009) Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant Cell Physiol 50:2034–2046PubMedCrossRefGoogle Scholar
  23. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727PubMedCrossRefGoogle Scholar
  24. Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T (2003) The YOREYORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J 36:55–66PubMedCrossRefGoogle Scholar
  25. Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54PubMedCrossRefGoogle Scholar
  26. Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107PubMedCrossRefGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  28. Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321PubMedCrossRefGoogle Scholar
  29. Lolle SJ, Hsu W, Pruitt RE (1998) Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 149:607–619PubMedGoogle Scholar
  30. Lu S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564PubMedCrossRefGoogle Scholar
  31. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(Supplement):257–279PubMedCrossRefGoogle Scholar
  32. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838PubMedCrossRefGoogle Scholar
  33. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136PubMedCrossRefGoogle Scholar
  34. Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316PubMedCrossRefGoogle Scholar
  35. Qin BX, Tang D, Huang J, Li M, Wu XR, Lu LL, Wang KJ, Yu HX, Chen JM, Gu MH, Cheng ZK (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant doi:  10.1093/mp/ssr1028
  36. Raven JA, Edwards D (2004) Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Elsevier, Oxford, pp 17–41CrossRefGoogle Scholar
  37. Riederer M (2006) Introduction: biology of the plant cuticle. Biology of the plant cuticle. Blackwell, Oxford, pp 1–8CrossRefGoogle Scholar
  38. Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877PubMedCrossRefGoogle Scholar
  39. Rowland O, Lee R, Franke R, Schreiber L, Kunst L (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544PubMedCrossRefGoogle Scholar
  40. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707PubMedCrossRefGoogle Scholar
  41. Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642PubMedCrossRefGoogle Scholar
  42. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Métraux JP, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–738PubMedCrossRefGoogle Scholar
  43. Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788–1796PubMedCrossRefGoogle Scholar
  44. Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731PubMedCrossRefGoogle Scholar
  45. Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489PubMedCrossRefGoogle Scholar
  46. Taiz L, Zeiger E (1998) Plant defenses: surface protectants and secondary metabolites. Plant physiology, 2nd edn. Sinauer Associates, Sunderland, pp 342–376Google Scholar
  47. Walton TJ (1990) Waxes, cutin and suberin. Methods Plant Biochem 4:5–158Google Scholar
  48. Wang Y, Ren Y, Liu X, Jiang L, Chen L, Han X, Jin M, Liu S, Liu F, Lv J, Zhou K, Su N, Bao Y, Wan J (2010) OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J 64:812–824PubMedCrossRefGoogle Scholar
  49. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc Natl Acad Sci USA 98:9694–9699PubMedCrossRefGoogle Scholar
  50. Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40PubMedCrossRefGoogle Scholar
  51. Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes. Plant Physiol 128:924–934PubMedCrossRefGoogle Scholar
  52. Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax Crystal-Sparse Leaf1 encodes a beta-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228:675–685PubMedCrossRefGoogle Scholar
  53. Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bigang Mao
    • 1
  • Zhijun Cheng
    • 1
  • Cailin Lei
    • 1
  • Fenghua Xu
    • 1
  • Suwei Gao
    • 1
  • Yulong Ren
    • 2
  • Jiulin Wang
    • 1
  • Xin Zhang
    • 1
  • Jie Wang
    • 1
  • Fuqing Wu
    • 1
  • Xiuping Guo
    • 1
  • Xiaolu Liu
    • 1
  • Chuanyin Wu
    • 1
  • Haiyang Wang
    • 1
  • Jianmin Wan
    • 1
    • 2
    Email author
  1. 1.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agriculture SciencesBeijingChina
  2. 2.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina

Personalised recommendations