, Volume 234, Issue 3, pp 555–563 | Cite as

Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype

  • Keina Monda
  • Juntaro Negi
  • Atsuhiro Iio
  • Kensuke Kusumi
  • Mikiko Kojima
  • Mimi Hashimoto
  • Hitoshi Sakakibara
  • Koh Iba
Original Article


The Arabidopsis Cape Verde Islands (Cvi-0) ecotype is known to differ from other ecotypes with respect to environmental stress responses. We analyzed the stomatal behavior of Cvi-0 plants, in response to environmental signals. We investigated the responses of stomatal conductance and aperture to high [CO2] in the Cvi-0 and Col-0 ecotypes. Cvi-0 showed constitutively higher stomatal conductance and more stomatal opening than Col-0. Cvi-0 stomata opened in response to light, but the response was slow. Under low humidity, stomatal opening was increased in Cvi-0 compared to Col-0. We then assessed whether low humidity affects endogenous ABA levels in Cvi-0. In response to low humidity, Cvi-0 had much higher ABA levels than Col-0. However, epidermal peels experiments showed that Cvi-0 stomata were insensitive to ABA. Measurements of organic and inorganic ions in Cvi-0 guard cell protoplasts indicated an over-accumulation of osmoregulatory anions (malate and Cl). This irregular anion homeostasis in the guard cells may explain the constitutive stomatal opening phenotypes of the Cvi-0 ecotype, which lacks high [CO2]-induced and low humidity-induced stomatal closure.


Abscisic acid Arabidopsis Cape Verde Islands (Cvi-0) ecotype CO2 Stomata 



Abscisic acid


Free air CO2 enrichment


Fresh weight


Guard cell protoplast


Stomatal conductance


Jasmonic acid




Relative humidity


Salicylic acid


  1. Aguilar I, Alamillo JM, García-Olmedo F, Rodríguez-Palenzuela P (2002) Natural variability in the Arabidopsis response to infection with Erwinia carotovora subsp. carotovora. Planta 215:205–209PubMedCrossRefGoogle Scholar
  2. Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764PubMedGoogle Scholar
  3. Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740PubMedCrossRefGoogle Scholar
  4. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  5. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030PubMedCrossRefGoogle Scholar
  6. Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS ONE 3:e1705PubMedCrossRefGoogle Scholar
  7. Brosché M, Merilo E, Mayer F, Pechter P, Puzõrjova I, Brader G, Kangasjärvi J, Kollist H (2010) Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant Cell Environ 33:914–925PubMedCrossRefGoogle Scholar
  8. Chan EKF, Rowe HC, Hansen BG, Kliebenstein DJ (2010) The complex genetic architecture of the metabolome. PLoS Genet 6:e1001198PubMedCrossRefGoogle Scholar
  9. Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF (2011) Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. J Exp Bot 62:167–176PubMedCrossRefGoogle Scholar
  10. Cooley NM, Higgins JT, Holmes MG, Attridge TH (2001) Ecotypic differences in responses of Arabidopsis thaliana L. to elevated polychromatic UV-A and UV-B+A radiation in the natural environment: a positive correlation between UV-B+A inhibition and growth rate. J Photochem Photobiol B Biol 60:143–150CrossRefGoogle Scholar
  11. Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909PubMedCrossRefGoogle Scholar
  12. Gotow K, Tanaka K, Kondo N, Kobayashi K, Syōno K (1985) Light activation of NADP-malate dehydrogenase in guard cell protoplasts from Vicia faba L. Plant Physiol 79:829–832PubMedCrossRefGoogle Scholar
  13. Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397PubMedCrossRefGoogle Scholar
  14. Hetherington AM (2001) Guard cell signaling. Cell 107:711–714PubMedCrossRefGoogle Scholar
  15. Hwang J-U, Jeon BW, Hwang Y, Lee Y (2010) Abscisic acid inactivates ROP2 GTPase and accelerates the stomatal closing movement. International workshop on plant membrane biology XV.
  16. Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly-sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214PubMedCrossRefGoogle Scholar
  17. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383CrossRefGoogle Scholar
  18. Kuśnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58:2537–2552PubMedCrossRefGoogle Scholar
  19. Lee M, Choi Y, Burla B, Kim Y, Jeon B, Maeshima M, Yoo J, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biol 10:1217–1223PubMedCrossRefGoogle Scholar
  20. Lefebvre V, Kiani SP, Durand-Tardif M (2009) A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana. Int J Mol Sci 10:3547–3582PubMedCrossRefGoogle Scholar
  21. Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661PubMedCrossRefGoogle Scholar
  22. Li J, Wang X, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303PubMedCrossRefGoogle Scholar
  23. Li P, Sioson A, Mane SP, Ulanov A, Grothaus G, Heath LS, Murali TM, Bohnert HJ, Grene R (2006) Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Mol Biol 62:593–609PubMedCrossRefGoogle Scholar
  24. Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 31:1673–1687PubMedCrossRefGoogle Scholar
  25. Lobin W (1983) The occurrence of Arabidopsis thaliana in the Cape Verde Islands. Arab Info Ser 20:119–123Google Scholar
  26. MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B 353:1475–1488CrossRefGoogle Scholar
  27. Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062PubMedCrossRefGoogle Scholar
  28. Mustilli A, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099PubMedCrossRefGoogle Scholar
  29. Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374PubMedCrossRefGoogle Scholar
  30. Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486PubMedCrossRefGoogle Scholar
  31. Outlaw WH Jr, Du Z, Meng FX, Aghoram K, Riddle KA, Chollet R (2002) Requirements for activation of the signal-transduction network that leads to regulatory phosphorylation of leaf guard-cell phosphoenolpyruvate carboxylase during fusicoccin-stimulated stomatal opening. Arch Biochem Biophys 407:63–71PubMedCrossRefGoogle Scholar
  32. Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342PubMedCrossRefGoogle Scholar
  33. Pandey S, Wang X, Coursol SA, Assmann SM (2002) Preparation and applications of Arabidopsis thaliana guard cell protoplasts. New Phytol 153:517–526CrossRefGoogle Scholar
  34. Pei Z, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423PubMedCrossRefGoogle Scholar
  35. Pepper AE, Corbett RW, Kang N (2002) Natural variation in Arabidopsis seedling photomorphogenesis reveals a likely role for TED1 in phytochrome signalling. Plant Cell Environ 25:591–600CrossRefGoogle Scholar
  36. Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microb Interact 23:846–860CrossRefGoogle Scholar
  37. Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800PubMedCrossRefGoogle Scholar
  38. Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614PubMedCrossRefGoogle Scholar
  39. Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51:354–365PubMedCrossRefGoogle Scholar
  40. Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658PubMedCrossRefGoogle Scholar
  41. Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–430CrossRefGoogle Scholar
  42. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658PubMedCrossRefGoogle Scholar
  43. Takhtajan A (1986) Floristic regions of the world. University of California Press, BerkeleyGoogle Scholar
  44. Ueno K, Kinoshita T, Inoue S, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963PubMedCrossRefGoogle Scholar
  45. Vahisalu T, Kollist H, Wang Y, Nishimura N, Chan W, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491PubMedCrossRefGoogle Scholar
  46. Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682PubMedCrossRefGoogle Scholar
  47. Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376CrossRefGoogle Scholar
  48. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Keina Monda
    • 1
  • Juntaro Negi
    • 1
  • Atsuhiro Iio
    • 2
  • Kensuke Kusumi
    • 1
  • Mikiko Kojima
    • 3
  • Mimi Hashimoto
    • 1
  • Hitoshi Sakakibara
    • 3
  • Koh Iba
    • 1
  1. 1.Department of Biology, Faculty of SciencesKyushu UniversityFukuokaJapan
  2. 2.National Institute for Environmental Studies (NIES)TsukubaJapan
  3. 3.RIKEN Plant Science CenterYokohamaJapan

Personalised recommendations