, Volume 234, Issue 3, pp 487–499 | Cite as

Ginseng root water-extracted pectic polysaccharides originate from secretory cavities

  • Li Yu
  • Yifa Zhou
  • J. Paul KnoxEmail author
Original Article


A range of molecular probes for cell wall polysaccharides has been used to explore the structure and location of water-extracted pectic polysaccharides occurring in fractions isolated from ginseng roots. The LM19 homogalacturonan (HG) epitope was abundant in an HG fraction and analysis of LM19 binding to a rhamnogalacturonan-I (RG-I) rich-fraction indicated that the LM19 epitope is sensitive to acetylation. A specific RG-I epitope (LM16), four arabinogalactan-protein (AGP) epitopes (LM2, LM14, JIM16, MAC207) and an extensin epitope (JIM20) were found to be abundant and co-located in several isolated polysaccharide fractions including an arabinogalactan fraction and two RG-I fractions. Detection of the RG-I, AGP and extensin epitopes identified in isolated polysaccharide fractions in sections of ginseng roots indicated that they were most abundant in secretory cavities found in the cortical regions of ginseng roots. In addition, the immunocytochemical study indicated that polysaccharide epitope masking is a widespread phenomenon in the primary cell walls of ginseng roots.


Arabinogalactan-protein Cell walls Extensin Panax ginseng Homogalacturonan Secretory cavity 





Carbohydrate-binding module


Enzyme-linked immunosorbent assay


Fluorescein isothiocyanate




Milk protein


Phosphate-buffered saline






Toluidine blue O


Trifluoroacetic acid



We are grateful to the Chinese Scholarship Council for the award of a travel scholarship to Li Yu. We thank Sue Marcus for technical assistance.


  1. Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329PubMedCrossRefGoogle Scholar
  2. Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ (2006) Systematic review of the effects of ginseng on cardiovascular risk factors. Ann Pharmacother 40:83–95PubMedGoogle Scholar
  3. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:879–900CrossRefGoogle Scholar
  4. Cheng H, Li S, Fan Y, Gao X, Hao M, Wang J, Zhang X, Tai G, Zhou Y (2010) Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med Oncol 28:175–181PubMedCrossRefGoogle Scholar
  5. Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800PubMedCrossRefGoogle Scholar
  6. Clausen MH, Ralet MC, Willats WGT, McCartney L, Marcus SE, Thibault JF, Knox JP (2004) A monoclonal antibody to feruloylated-(1 → 4)-β-d-galactan. Planta 219:1036–1041PubMedCrossRefGoogle Scholar
  7. Evert RF (2006) Xylem: cell types and developmental aspects. In: Evert RF (ed) Esau’s plant anatomy: meristems, cells and tissues of the plant body—their structure, function, and development, 3rd edn. Wiley, New York, pp 255–283CrossRefGoogle Scholar
  8. Fan Y, Cheng H, Li S, Wang J, Liu D, Hao M, Gao X, Fan E, Tai G, Zhou Y (2010) Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides. Carbohydr Polym 81:340–347CrossRefGoogle Scholar
  9. Gleeson PA, Clarke AE (1979) Structural studies on the major component of Gladiolus style mucilage, an arabinogalactan-protein. Biochem J 181:607–621PubMedGoogle Scholar
  10. Golovchenko VV, Ovodova RG, Shashkov AS, Ovodov YS (2002) Structural studies of the pectic polysaccharide from duckweed Lemna minor L. Phytochemistry 60:89–97PubMedCrossRefGoogle Scholar
  11. Hu SY (1976) The genus Panax (ginseng) in Chinese medicine. Econ Bot 30:11–28CrossRefGoogle Scholar
  12. Immerzeel P, Eppink MM, de Vries SC, Schols HA, Voragen AGJ (2006) Carrot arabinogalactan proteins are interlinked with pectins. Physiol Plant 128:18–28CrossRefGoogle Scholar
  13. Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 → 4)-β-d-galactan. Plant Physiol 113:1405–1412PubMedGoogle Scholar
  14. Kieliszewski M, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, posttranslational codes, and phylogeny. Plant J 5:157–172PubMedCrossRefGoogle Scholar
  15. Kieliszewski MJ, Kamyab A, Leykam JF, Lamport DTA (1992) A histidine-rich extensin from Zea mays is an arabinogalactan protein. Plant Physiol 99:538–547PubMedCrossRefGoogle Scholar
  16. Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally-regulated epitopes of cell surface arabinogalactan-proteins and their relation to root tissue pattern formation. Plant J 1:317–326Google Scholar
  17. Li F (2002) The anatomy of China ginseng. In: Li F (ed) China ginseng and American ginseng. China Agricultural Science and Technology Press, Beijing, pp 38–64Google Scholar
  18. Mahady GB, Gyllenhaal C, Fong HHS, Farnsworth NR (2000) Ginsengs: a review of safety and efficacy. Nutr Clin Care 3:90–101CrossRefGoogle Scholar
  19. Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60PubMedCrossRefGoogle Scholar
  20. Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WGT, Knox PJ (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203PubMedCrossRefGoogle Scholar
  21. McCartney L, Steele-King CG, Jordan E, Knox JP (2003) Cell wall pectic (1 → 4)-β-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J 33:447–454PubMedCrossRefGoogle Scholar
  22. McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546PubMedCrossRefGoogle Scholar
  23. Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Mikklesen JD, Knox JP, Willats WGT (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchial clustering of their carbohydrate microarray binding profiles. Glycoconj J 25:37–48PubMedCrossRefGoogle Scholar
  24. Nah SY, Kim DH, Rhim H (2007) Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS 13:381–404Google Scholar
  25. O’Brien TP, Feder N, Mc-Cully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:367–373Google Scholar
  26. Parker AJP, Haskins EF, Deyrup-Olsen I (1982) Toluidine blue: a simple, effective stain for plant tissues. Am Biol Teach 44:487–489Google Scholar
  27. Pennell RI, Knox JP, Scofield GN, Selvendran RR, Roberts K (1989) A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants. J Cell Biol 108:1967–1977PubMedCrossRefGoogle Scholar
  28. Radad K, Gille G, Irausch WD (2004) Use of ginseng in medicine: perspectives on CNS disorders. Iranian J Pharmacol Therapeut 3:30–40Google Scholar
  29. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  30. Round AN, Rigby NM, MacDougall AJ, Morris VJ (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Polym 345:487–497Google Scholar
  31. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161PubMedCrossRefGoogle Scholar
  32. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedCrossRefGoogle Scholar
  33. Smallwood M, Beven A, Donovan N, Neill SJ, Peart J, Roberts K, Knox JP (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J 5:237–246CrossRefGoogle Scholar
  34. Smallwood M, Martin H, Knox JP (1995) An epitope of rice threonine- and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma membrane glycoproteins. Planta 196:510–522PubMedCrossRefGoogle Scholar
  35. Tomoda M, Hirabayashi K, Shimizu N, Gonda R, Ohara N, Takada K (1993) Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 16:1087–1090PubMedCrossRefGoogle Scholar
  36. Tomoda M, Hirabayashi K, Shimizu N, Gonda R, Ohara N (1994) The core structure of ginseng PA, a phagocytosis-activation polysaccharide from the root of Panax ginseng. Biol Pharm Bull 17:1287–1291PubMedCrossRefGoogle Scholar
  37. Vassilyev AE (2000) Quantitative ultrastructural data of secretory duct epithelial cells in Rhus toxicodendron. Int J Plant Sci 16:615–630CrossRefGoogle Scholar
  38. Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009a) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862PubMedCrossRefGoogle Scholar
  39. Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, McCleary BV, Mckee L, Gilbert HJ, Knox JP (2009b) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59:413–425PubMedCrossRefGoogle Scholar
  40. Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 55:567–575PubMedCrossRefGoogle Scholar
  41. Wang T (2001) Ginseng morphogenesis and anatomy. In: Wang T (ed) China Ginseng. Liaoning Science And Technology Publishing House, Shenyang, pp 132–167Google Scholar
  42. Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y (2010) Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. J Ethnopharmacol 130:421–423PubMedCrossRefGoogle Scholar
  43. Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 → 5)-α-l-arabinan. Carbohydr Res 308:149–152PubMedCrossRefGoogle Scholar
  44. Willats WGT, McCartney L, Steele-King CG, Marcus SE, Mortm A, Huisman M, van Alebeek GJ, Schols HA, Voragen AGJ, Le Goff A, Bonnin E, Thibault J-F, Knox JP (2004) A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218:673–681PubMedCrossRefGoogle Scholar
  45. Yates EA, Valdor J-F, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139PubMedCrossRefGoogle Scholar
  46. Yu L, Zhang X, Li S, Liu X, Sun L, Liu H, Iteku J, Zhou Y, Tai G (2009) Rhamnogalacturonan I domains from ginseng pectin. Carbohydr Polym 79:811–817CrossRefGoogle Scholar
  47. Zhang X, Yu L, Bi H, Li X, Ni W, Han H, Li N, Wang B, Zhou Y, Tai G (2009) Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr Polym 77:544–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Life SciencesNortheast Normal UniversityChangchunPeople’s Republic of China
  2. 2.Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK

Personalised recommendations