Planta

, Volume 234, Issue 2, pp 347–361 | Cite as

Mapping QTLs for improving grain yield using the USDA rice mini-core collection

  • Xiaobai Li
  • Wengui Yan
  • Hesham Agrama
  • Limeng Jia
  • Xihong Shen
  • Aaron Jackson
  • Karen Moldenhauer
  • Kathleen Yeater
  • Anna McClung
  • Dianxing Wu
Original Article

Abstract

Yield is the most important and complex trait for genetic improvement in crops, and marker-assisted selection enhances the improvement efficiency. The USDA rice mini-core collection derived from over 18,000 accessions of global origins is an ideal panel for association mapping. We phenotyped 203 O. sativa accessions for 14 agronomic traits and identified 5 that were highly and significantly correlated with grain yield per plant: plant height, plant weight, tillers, panicle length, and kernels/branch. Genotyping with 155 genome-wide molecular markers demonstrated 5 main cluster groups. Linkage disequilibrium (LD) decayed at least 20 cM and marker pairs with significant LD ranged from 4.64 to 6.06% in four main groups. Model comparisons revealed that different dimensions of principal component analysis affected yield and its correlated traits for mapping accuracy, and kinship did not improve the mapping in this collection. Thirty marker–trait associations were highly significant, 4 for yield, 3 for plant height, 6 for plant weight, 9 for tillers, 5 for panicle length and 3 for kernels/branch. Twenty-one markers contributed to the 30 associations, because 8 markers were co-associated with 2 or more traits. Allelic analysis of OSR13, RM471 and RM7003 for their co-associations with yield traits demonstrated that allele 126 bp of RM471 and 108 bp of RM7003 should receive greater attention, because they had the greatest positive effect on yield traits. Tagging the QTLs responsible for multiple yield traits may simultaneously help dissect the complex yield traits and elevate the efficiency to improve grain yield using marker-assisted selection in rice.

Keywords

Association mapping Linkage disequilibrium (LD) Rice Germplasm Grain yield 

Abbreviations

ARO

Aromatic

AUS

Aus

BIC

Bayesian information criterion

GSOR

Genetic Stock Oryza

IND

Indica

LD

Linkage disequilibrium

NJ

Neighbor-Joining

PCA

Principal component analysis

PCR

Polymerase chain reaction

PIC

Polymorphic Information Content

QTL

Quantitative trait loci

R2

Squared allele frequency correlation estimates

SNP

Single nucleotide polymorphism

SSR

Simple sequence repeat

TEJ

Temperate japonica

TRJ

Tropical japonica

UPGMA

Unweighted pair-group method using arithmetic average

URMC

USDA rice mini-core collection

Supplementary material

425_2011_1405_MOESM1_ESM.doc (4.1 mb)
Supplementary Fig. 1 (DOC 4183 kb)
425_2011_1405_MOESM2_ESM.doc (94 kb)
Supplementary Table 1 (DOC 123 kb)
425_2011_1405_MOESM3_ESM.doc (123 kb)
Supplementary Table 2 (DOC 94 kb)

References

  1. Abadie T, Cordeiro CMT, Fonseca JR, Alves RBN, Burle ML, Brondani C, Rangel PHN, Castro EM, Silva HT, Freire MS, Zimmermann FJP, Magalhaes JRSO (2005) Constructing a rice core collection for Brazil. Pesquisa Agropecu Bras 40:129–136Google Scholar
  2. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm. Int J Plant Genomics. doi: 10.1155/2008/574927
  3. Agrama HA, Eizenga GC (2008) Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160:339–355CrossRefGoogle Scholar
  4. Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356CrossRefGoogle Scholar
  5. Agrama HA, Yan WG, Lee F, Fjellstrom R, Chen MH, Jia M, McClung A (2009) Genetic assessment of a mini-core subset developed from the USDA Rice Genebank. Crop Sci 49:1336–1346CrossRefGoogle Scholar
  6. Agrama HA, Yan WG, Jia M, Fjellstrom R, McClung A (2010) Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci 2:247–291Google Scholar
  7. Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet 116:881–890PubMedCrossRefGoogle Scholar
  8. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:531–539CrossRefGoogle Scholar
  9. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289PubMedCrossRefGoogle Scholar
  10. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  11. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  12. Borba TCO, Brondani RPV, Rangel PHN, Brondani C (2005) Evaluation of the number and information content of fluorescent-labeled SSR for rice germplasm characterization. Crop Breed Appl Biotechnol 2:157–165Google Scholar
  13. Borba TCO, Brondani RPV, Rangel PHN, Brondani C (2009) Microsatellite marker-mediated analysis of the EMBRAPA Rice Core Collection genetic diversity. Genetica 137:293–304CrossRefGoogle Scholar
  14. Borba TCO, Brondani RPV, Breseghello F, Coelho ASG, Mendonça JA, Rangel PHN, Brondani C (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33:515–524CrossRefGoogle Scholar
  15. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  16. Brondani C, Rangel N, Brondani V, Ferreira E (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203PubMedCrossRefGoogle Scholar
  17. Brondani C, Borba TCO, Rangel PHN, Brondani RPV (2006) Determination of traditional varieties of Brazilian rice using microsatellite markers. Genet Mol Biol 29:676–684CrossRefGoogle Scholar
  18. Brooks SA, Yan W, Jackson AK, Deren CW (2008) A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele:Rc-g. Theor Appl Genet 117:575–580PubMedCrossRefGoogle Scholar
  19. Chen Y, Lubberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461PubMedCrossRefGoogle Scholar
  20. Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007) Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci 47:2372–2378CrossRefGoogle Scholar
  21. Cooper M, Podlich DW, Smith OS (2005) Gene-to-phenotype models and complex trait genetics. Aust J Agric Res 56:895–918CrossRefGoogle Scholar
  22. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004PubMedCrossRefGoogle Scholar
  23. Devlin B, Bacanu SA, Roeder K (2004) Genomic control to the extreme. Nat Genet 36:1129–1130PubMedCrossRefGoogle Scholar
  24. Dhanraj A, Jagadish CA (1987) Studies on character association in the F2 generation of ten selected crosses in rice (Oryza sativa L.). J Res A FAU 15:64–65Google Scholar
  25. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936PubMedCrossRefGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  27. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  28. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  29. Farnir F, Coppieters W, Arranz J-J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227PubMedCrossRefGoogle Scholar
  30. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  31. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  32. Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864CrossRefGoogle Scholar
  33. Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). J Genet Genomics 37:147–157PubMedCrossRefGoogle Scholar
  34. Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769PubMedGoogle Scholar
  35. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCrossRefGoogle Scholar
  36. Gravois KA, McNew RW (1993) Genetic relationships among and selection for rice yield and yield components. Crop Sci 33:249–252CrossRefGoogle Scholar
  37. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  38. Hemamalini GS, Shashidhar HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78CrossRefGoogle Scholar
  39. Holbrook CC, Dong W (2005) Development and evaluation of a mini core collection for the U.S. peanut germplasm collection. Crop Sci 45:1540–1544CrossRefGoogle Scholar
  40. Holland J (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161PubMedCrossRefGoogle Scholar
  41. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497PubMedCrossRefGoogle Scholar
  42. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874PubMedCrossRefGoogle Scholar
  43. Huttley GA, Smit MW, Carrington HM, O’Brien SJ (1999) A scan for linkage disequilibrium across the human genome. Genetics 152:1711–1722PubMedGoogle Scholar
  44. Inostroza L, Pozo AD, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23:365–376CrossRefGoogle Scholar
  45. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547PubMedCrossRefGoogle Scholar
  46. Jiang GH, Xu CG, Li XH, He YQ (2004) Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population. Acta Genet Sinicavol 31:63–72Google Scholar
  47. Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487PubMedCrossRefGoogle Scholar
  48. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCrossRefGoogle Scholar
  49. Li DJ, Sun CQ, Fu YC, Chen L, Zhu ZF, Li C, Cai HW, Wang XK (2002) Identification and mapping of genes for improving yield from Chinese common wild rice (O. rufipogon Griff.) using advanced backcross QTL analysis. Chin Sci Bull 18:1533–1537CrossRefGoogle Scholar
  50. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621PubMedCrossRefGoogle Scholar
  51. Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194PubMedCrossRefGoogle Scholar
  52. Li X, Yan W, Agrama H, Hu B, Jia L, Jia M, Jackson A, Moldenhauer K, McClung A, Wu D (2010) Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Genetica 138:1221–1230PubMedCrossRefGoogle Scholar
  53. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  54. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a drum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  55. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232PubMedCrossRefGoogle Scholar
  56. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52CrossRefGoogle Scholar
  57. Nei M, Takezaki N (1983) Estimation of genetic distances and phylogenetic trees from DNA analysis. Proceedings of the 5th world congress. Genet Appl Livestock Prod 21:405–412Google Scholar
  58. Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649PubMedCrossRefGoogle Scholar
  59. Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan D (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173:975–983PubMedCrossRefGoogle Scholar
  60. Pande S, Kishore GK, Upadhyaya HD, Rao JN (2006) Identification of sources of multiple disease resistance in mini-core collection of chickpea. Plant Dis 90:1214–1218CrossRefGoogle Scholar
  61. Patterson N, Price AL, Reich D (2007) Population structure and eigenanalysis. PLoS Genet 2:e90Google Scholar
  62. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  63. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  64. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  65. Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita NT, Terauchi R (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet 114:731–743PubMedCrossRefGoogle Scholar
  66. Reich D, Price AL, Patterson N (2008) Principal component analysis of genetic data. Nat Genet 40:491–492PubMedCrossRefGoogle Scholar
  67. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCrossRefGoogle Scholar
  68. Rohlf F (2000) NTSYS-PC numerical taxonomy and multivariate analysis system ver 2.11L. Applied Biostatistics, New YorkGoogle Scholar
  69. Samonte SOP, Wilson LT, McClung AM (1998) Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Sci 38:1130–1136CrossRefGoogle Scholar
  70. Shao Y, Jin L, Zhang G, Lu Y, Shen Y, Bao J (2010) Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor Appl Genet. doi: 10.1007/s00122-010-1505-4
  71. Sharma RS, Choubey SD (1985) Correlation studies in upland rice. Indian J Agron 30:87–88Google Scholar
  72. Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum germplasm. Plant Dis 94:439–444CrossRefGoogle Scholar
  73. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCrossRefGoogle Scholar
  74. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedCrossRefGoogle Scholar
  75. Spielmeyer W, Ellis MH, Peter M (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048PubMedCrossRefGoogle Scholar
  76. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730PubMedCrossRefGoogle Scholar
  77. Stich B, Maurer HP, Melchinger AE, Frisch M, Heckenberger M, van der Voort JR, Peleman J, Sørensen AP, Reif JC (2006) Comparison of linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Mol Breed 17:217–226CrossRefGoogle Scholar
  78. Stich B, Möhring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754PubMedCrossRefGoogle Scholar
  79. Suh JP, Ahn SN, Cho YC, Kang KH, Choi IS, Kim YG, Suh HS, Hong HC (2005) Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed 37:214–220Google Scholar
  80. Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294PubMedCrossRefGoogle Scholar
  81. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927PubMedCrossRefGoogle Scholar
  82. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  83. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893PubMedCrossRefGoogle Scholar
  84. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinea CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  85. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  86. Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440CrossRefGoogle Scholar
  87. Upadhyaya HD, Oritz R (2001) A mini-core collection for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298CrossRefGoogle Scholar
  88. Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132CrossRefGoogle Scholar
  89. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  90. Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120:13–23PubMedCrossRefGoogle Scholar
  91. Weir BS (1996) Genetic data analysis. II. Methods for discrete population genetic data. Sinauer Associates, SunderlandGoogle Scholar
  92. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678Google Scholar
  93. Xin Z, Velten JP, Oliver MJ, Burke JJ (2003) Highthroughput DNA extraction method suitable for PCR. Biotechniques 34:820–826PubMedGoogle Scholar
  94. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 143:1–7Google Scholar
  95. Yan WG, Rutger JN, Bockelman HE, Tai TH (2005a) Agronomic evaluation and seed stock establishment of the USDA rice core collection. In Norman RJ et al (eds) B.R. Wells rice research studies 2004. University of Arkansas, Agricultural Experiment Station Research Series 529, pp 63–68Google Scholar
  96. Yan WG, Rutger JN, Bockelman HE, Tai TH (2005b) Evaluation of kernel characteristics of the USDA rice core collection. In Norman RJ et al (eds) B.R. Wells rice research studies 2004. University of Arkansas, Agricultural Experiment Station Research Series 529, pp 69–74Google Scholar
  97. Yan WG, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen MH, Tai TH, McClung AM (2007) Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Sci 47:869–878CrossRefGoogle Scholar
  98. Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292PubMedCrossRefGoogle Scholar
  99. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hunter DJ, Chanock SJ, Thomas G (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–649PubMedCrossRefGoogle Scholar
  100. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  101. Zhu C, Yu J (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182:875–888PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Xiaobai Li
    • 1
    • 2
    • 3
  • Wengui Yan
    • 3
  • Hesham Agrama
    • 2
  • Limeng Jia
    • 1
    • 2
    • 3
  • Xihong Shen
    • 4
  • Aaron Jackson
    • 3
  • Karen Moldenhauer
    • 2
  • Kathleen Yeater
    • 5
  • Anna McClung
    • 3
  • Dianxing Wu
    • 1
  1. 1.State Key Lab of Rice Biology, IAEA Collaborating CenterZhejiang UniversityHangzhouChina
  2. 2.Rice Research and Extension CenterUniversity of ArkansasStuttgartUSA
  3. 3.Dale Bumpers National Rice Research CenterUSDA-ARSStuttgartUSA
  4. 4.China National Rice Research InstituteHangzhouChina
  5. 5.Southern Plains AreaUSDA-ARSCollege StationUSA

Personalised recommendations