, Volume 233, Issue 3, pp 433–438

Plant response to stress meets dedifferentiation

  • Gideon Grafi
  • Vered Chalifa-Caspi
  • Tal Nagar
  • Inbar Plaschkes
  • Simon Barak
  • Vanessa Ransbotyn


Plant response to various stress conditions often results in expression of common genes, known as stress-responsive/inducible genes. Accumulating data point to a common, yet elusive process underlying the response of plant cells to stress. Evidence derived from transcriptome profiling of shoot apical meristem stem cells, dedifferentiating protoplast cells as well as from senescing cells lends support to a model in which a common response of cells to certain biotic and abiotic stresses converges on cellular dedifferentiation whereby cells first acquire a stem cell-like state before assuming a new fate.


Chromatin structure Dedifferentiation Senescence Stem cells Stress response Transcription factors 



Induced pluripotent stem cells


Shoot apical meristem


Senescence-associated genes


Transcription factor


Non-homologous end-joining

Supplementary material

425_2011_1366_MOESM1_ESM.xls (114 kb)
Supplementary Table 1 (XLS 114 kb)


  1. Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24CrossRefPubMedGoogle Scholar
  2. Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230:12–22CrossRefPubMedGoogle Scholar
  3. Balazadeh S, Riano-Pacho DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–65CrossRefPubMedGoogle Scholar
  4. Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41:1222–1230CrossRefPubMedGoogle Scholar
  5. Ben-Zioni A, Itai C, Vaadia Y (1967) Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol 42:361–365CrossRefPubMedGoogle Scholar
  6. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22CrossRefPubMedGoogle Scholar
  7. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585CrossRefPubMedGoogle Scholar
  8. Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V (2008) Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20:827–842CrossRefPubMedGoogle Scholar
  9. Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307PubMedGoogle Scholar
  10. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574CrossRefPubMedGoogle Scholar
  11. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677CrossRefPubMedGoogle Scholar
  12. Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 12:435–443CrossRefPubMedGoogle Scholar
  13. de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454CrossRefPubMedGoogle Scholar
  14. Dhindsa RS, Cleland RE (1975) Water stress and protein synthesis. II. Interaction between water stress, hydrostatic pressure, and abscisic acid on the pattern of protein synthesis in Avena coleoptiles. Plant Physiol 55:782–785CrossRefPubMedGoogle Scholar
  15. Do JH, Choi DK (2008) Clustering approaches to identifying gene expression patterns from DNA microarray data. Mol Cells 25:279–288PubMedGoogle Scholar
  16. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229CrossRefPubMedGoogle Scholar
  17. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447CrossRefPubMedGoogle Scholar
  18. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988CrossRefPubMedGoogle Scholar
  19. Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642CrossRefPubMedGoogle Scholar
  20. Gifford EM Jr, Steward KD (1967) Ultrastructure of the shoot apex of Chenopodium album and certain other seed plants. J Cell Biol 33:131–142CrossRefPubMedGoogle Scholar
  21. Grafi G (2004) How cells dedifferentiated: a lesson from plants. Dev Biol 268:1–6CrossRefPubMedGoogle Scholar
  22. Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549CrossRefGoogle Scholar
  23. Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1:555–585CrossRefGoogle Scholar
  24. Jamet E, Durr A, Parmentier Y, Criqui MC, Fleck J (1990) Is ubiquitin involved in the dedifferentiation of higher plant cells? Cell Differ Dev 29:37–46CrossRefPubMedGoogle Scholar
  25. Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588CrossRefPubMedGoogle Scholar
  26. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136CrossRefPubMedGoogle Scholar
  27. Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628CrossRefPubMedGoogle Scholar
  28. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801CrossRefPubMedGoogle Scholar
  29. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546CrossRefPubMedGoogle Scholar
  30. Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819CrossRefPubMedGoogle Scholar
  31. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129CrossRefPubMedGoogle Scholar
  32. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, CambridgeGoogle Scholar
  33. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746CrossRefPubMedGoogle Scholar
  34. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  35. Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320CrossRefGoogle Scholar
  36. Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208CrossRefPubMedGoogle Scholar
  37. Valente P, Tao W, Verbelen J-P (1998) Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco. Plant Sci 134:207–215CrossRefGoogle Scholar
  38. Venkatarayappa T, Fletcher RA, Thompson JE (1984) Retardation and reversal of senescence in bean leaves by benzyladenine and decapitation. Plant Cell Physiol 25:407–418Google Scholar
  39. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252CrossRefPubMedGoogle Scholar
  40. Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228:113–120CrossRefPubMedGoogle Scholar
  41. Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946CrossRefPubMedGoogle Scholar
  42. Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13(1):1–9CrossRefGoogle Scholar
  43. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778CrossRefPubMedGoogle Scholar
  44. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gideon Grafi
    • 1
  • Vered Chalifa-Caspi
    • 2
  • Tal Nagar
    • 2
  • Inbar Plaschkes
    • 2
  • Simon Barak
    • 1
  • Vanessa Ransbotyn
    • 1
  1. 1.French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael
  2. 2.The National Institute for BiotechnologyBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations